3PH<N>=<M> <A>

 

Description

 

Sets the assigned PWMs of an axis to the specified magnitude and phase angle for a brushless 3 phase motor.

This command is useful for energizing a coil (or effective coil position).  This is often required while initial homing or determining the commutation offset for a 3 phase brushless motor.  If an effective coil position is energized, the motor rotor will normally align itself to the coil position.  This is similar to the manner in which a stepping motor operates.  Since the rotor location is then known, the commutation offset may then be determined.  Alternately if an index mark is available, the effective coil position may be rotated by changing the phase angle until the index mark is detected.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Magnitude of output to apply. 

Valid Range is -230 ...  +230 PWM units

 

 

<A>

 

Commutation angle to be used. 

Units are in Commutation cycles

Only fractional value will be used

 

Example

 

3PH0=230 0.5

 

 

 

 

 

4PH<N>=<M> <A>

 

Sets the assigned PWMs of an axis to the specified magnitude and phase angle for a brushless 4 phase motor.

This command is useful for energizing a coil (or effective coil position).  This is often required while initial homing or determining the commutation offset for a 4 phase brushless motor.  If an effective coil position is energized, the motor rotor will normally align itself to the coil position.  This is similar to the manner in which a stepping motor operates.  Since the rotor location is then known, the commutation offset may then be determined.  Alternately if an index mark is available, the effective coil position may be rotated by changing the phase angle until the index mark is detected.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Magnitude of output to apply. 

Valid Range is -250 ...  +250 PWM units

 

 

<A>

 

Commutation angle to be used. 

Units are in Commutation cycles

Only fractional value will be used

 

Example

 

4PH0=250 0.5

 

 

 

 

 

Accel <N>=<A>

or

Accel <N>

 

Description

 

Get or Set the max acceleration (for independent moves and jogs)

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<A>

 

The max acceleration.  Units are in  Position units per sec2

 

 

Example

 

Accel0=1000.0

 

 

 

 

 

ADC<N>

 

Description

 

Display current ADC (Analog to Digital Converter).  Display  range -2048 to 2047

Channels 0-3 are ±10V general purpose inputs

Channels 4-7 are Motor Currents

Parameters

<N>

 

ADC channel

Valid range 0 ... 7

 

 

Example

 

ADC 0

 

 

 

 

 

Arc <XC> <YC> <RX> <RY> <θ0> <dθ> <Z0> <A0> <B0> <C0> <Z1> <A1> <B1> <C1> <a> <b> <c> <d> <tF>

 

Description

 

Place circular (also elliptical or helical) interpolated move into the coordinated motion buffer.  See also KMotion Coordinated Motion.  A path through space is defined where x and y are changing in an elliptical manner and z, a, b, c are changing in a linear manner forming a portion of a helix.  A parametric equation is defined which describes which portion of the path as well as how as a function of time the path is to be traversed.  This command can consist of up to 6 axis of coordinated motion.  X and Y perform an arc while Z, A, B, and C move linearly.

 

Although the Arc command may be sent directly, the Arc command is normally generated automatically to perform a planned trajectory by the coordinated motion library or GCode.

 

(XC,YC) - center of circle

 

(RX,RY) - x radius and y radius

 

θ0 - initial angle for the beginning of the path

 

- amount of angular change for the path

 

Z0 - initial Z position of path

 

A0 - initial A position of path

 

B0 - initial B position of path

 

C0 - initial C position of path

 

Z1 - final Z position of path

 

A1 - final A position of path

 

B1 - final B position of path

 

C1 - final C position of path

 

3rd order parametric equation where

p = a t3 + b t2 + c t + d

p is the position along the path as a function of time. When p=0 the (x,y,z) position will be at the beginning of the path (θ= θ0 and z=z0).  When p=1 the (x,y,z) position will be at the end of the path (θ= θ0+dθ, and z=z1).

 

This motion segment will be performed over a time period of tF, where t varies from 0 ... tF.   Note that it is not necessary that p vary over the entire range of 0 ... 1.   This is often the case when there may be an acceleration, constant velocity, and deceleration phase phase over the path.  ie: t might vary from 0.0->0.1 where p might vary from  0.3->0.7.

 

Parameters

<XC> - X center of ellipse, units are position units of x axis

<YC> - Y center of ellipse, units are position units of y axis

<RX - X radius of ellipse, units are position units of x axis  

<RY - Y radius of ellipse, units are position units of y axis

0> - initial theta position on ellipse, radians (0 radians points in the +x direction)

<> - change in  theta position on ellipse, radians (+ theta causes CCW motion)

<Z0> - initial Z position on path, units are position units of z axis  

<A0> - initial A position on path, units are position units of a axis  

<B0> - initial B position on path, units are position units of b axis  

<C0> - initial C position on path, units are position units of c axis  

<Z1> - final Z position on path, units are position units of z axis  

<A1> - final A position on path, units are position units of a axis  

<B1> - final B position on path, units are position units of b axis  

<C1> - final C position on path, units are position units of c axis  

<a> - parametric equation t3 coefficient

<b> - parametric equation t2 coefficient

<c> - parametric equation t coefficient

<d> - parametric equation constant coefficient

<tF> -  time for segment

 

 

Example (complete unit circle, centered at 0.5,0.5, no Z, A, B, or C motion, performed in 10 seconds)

 

 

Arc 0.5 0.5 1.0 1.0 0.0 6.28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 10.0

 

 

ArcXZ <XC> <ZC> <RX> <RZ> <θ0> <dθ> <Y0> <A0> <B0> <C0> <Y1> <A1> <B1> <C1> <a> <b> <c> <d> <tF>

 

Description

 

Place circular (also elliptical or helical) interpolated move into the coordinated motion buffer.  Same as Arc Command except circular motion is performed in the XZ plane rather than the XY plane.

 

 

ArcYZ <YC> <ZC> <RY> <RZ> <θ0> <dθ> <X0> <A0> <B0> <C0> <X1>  <A1> <B1> <C1> <a> <b> <c> <d> <tF>

 

Description

 

Place circular (also elliptical or helical) interpolated move into the coordinated motion buffer.  Same as Arc Command except circular motion is performed in the YZ plane rather than the XY plane.

 

 

 

ArcHex <XC> <YC> <RX> <RY> <θ0> <dθ> <Z0> <A0> <B0> <C0> <Z1>  <A1> <B1> <C1> <a> <b> <c> <d> <tF>

 

Description

 

Place circular (also elliptical or helical) interpolated move into the coordinated motion buffer.   This command is exactly the same as the Arc command above, except all 13 parameters are specified as 32-bit hexadecimal values which are the binary images of 32-bit floating point values.  When generated by a program this is often faster, simpler,  and more precise than decimal values.  See also KMotion Coordinated Motion.

Parameters

See above.

 

 

Example (complete unit circle, centered at 0.5,0.5, no Z motion, performed in 10 seconds)

 

 

Arc 3f000000 3f000000 3f800000 3f800000 0 40c8f5c3 0 0 0 0 40c8f5c3 0 41800000

 

 

ArcHexXZ <XC> <ZC> <RX> <RZ> <θ0> <dθ> <Y0> <A0> <B0> <C0> <Y1> <A1> <B1> <C1> <a> <b> <c> <d> <tF>

 

Description

 

Place circular (also elliptical or helical) interpolated move into the coordinated motion buffer.  Same as ArcHex Command except circular motion is performed in the XZ plane rather than the XY plane.

 

 

ArcHexYZ <YC> <ZC> <RY> <RZ> <θ0> <dθ> <X0> <A0> <B0> <C0> <X1> <A1> <B1> <C1> <a> <b> <c> <d> <tF>

 

Description

 

Place circular (also elliptical or helical) interpolated move into the coordinated motion buffer.  Same as ArcHex Command except circular motion is performed in the YZ plane rather than the XY plane.

 

 

 

BacklashAmount<N>=<A>

or

BacklashAmount<N>

 

Description

 

Sets or gets the amount of Backlash Compensation Offset to be applied.

 

See also BacklashMode and BacklashRate.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<A>

 

Floating point Backlash Compensation Amount in units of Steps or Counts. 

 

 

Example

 

BacklashAmount=15.5

 

 

 

 

BacklashMode<N>=<M>

or

BacklashMode<N>

 

Description

 

Sets or gets the Backlash Compensation mode from either BACKLASH_OFF (0) to BACKLASH_LINEAR (1).  When the backlash mode is set to Linear mode, whenever the commanded destination begins moving in the positive direction, a positive offset of the amount, BacklashAmount, will be applied.  The offset will be ramped upward as a linear function of time at the rate specified as the BacklashRate.  Whenever the commanded destination begins moving in the negative direction the offset will be removed by ramping downward toward zero at the same rate.

 

If the the Backlash Compensation mode is set to BACKLASH_OFF (0), no backlash compensation will be applied.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Backlash Compensation Mode setting.  Currently 0 or 1.

 

 

Example

 

BacklashMode0=1

 

 

 

 

BacklashRate<N>=<R>

or

BacklashRate<N>

 

Description

 

Sets or gets the rate at which the amount of Backlash Compensation Offset will be applied.

 

See also BacklashMode and BacklashAmount.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<A>

 

Floating point Backlash Compensation Rate in units of Steps or Counts per second. 

 

 

Example

 

BacklashRate=1000.0

 

 

 

BegRapidBuf

 

Description

Inserts into coordinated move buffer a command to indicate Rapid is in progress and to use Rapid FRO.

Parameters

None

 

Example

 

BegRapidBuf

 

 

 

 

CheckDone<N>

 

Description

 

Displays:

   

     1 if axis N has completed its motion

     0 if axis N has not completed its motion

    -1 if the axis is disabled

   

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

Example

 

CheckDone0

 

 

 

 

 

CheckDoneBuf

 

Description

 

Displays the status of the Coordinated Motion Buffer.  KMotion contains a Coordinated Motion Buffer where move segments (linear and arcs) and I/O commands may be downloaded and executed in real time.

 

Displays:

   

     1 if all coordinated move segments have completed

     0 if all coordinated move segments have not completed

    -1 if any axis in the defined coordinate system is disabled

Parameters

None

 

Example

 

CheckDoneBuf

 

 

 

 

CheckDoneGather

 

Description

 

Displays the status of a data gather operation.  KMotion contains a mechanism for capturing data from a variety of sources in real time.  This mechanism is utilized when capturing data for Bode plots and Step response plots.  It is also available for general purpose use.  See the data gathering example.

 

 

 

Displays:

   

     1 if data gather is completed

     0 if data gather has not completed

Parameters

None

 

Example

 

CheckDoneGather

 

 

 

 

 

CheckDoneXYZABC

 

Description

 

Displays status of a commanded MoveXYZABC command.  See also DefineCS6.

 

Displays:

   

     1 if all axes in the defined coordinate system have completed their motion

     0 if any axis in the defined coordinate system has not completed its motion

    -1 if any axis in the defined coordinate system is disabled

   

Parameters

 

None

 

 

Example

 

CheckDoneXYZABC

 

 

CheckThread<N>

 

Description

 

Checks whether a User Program Thread is currently executing.  Returns 1 if executing, 0 if not executing.

 

Parameters

<N>

 

Thread number specified as a decimal number.  Valid range 1...7

 

 

Example

 

CheckThread0

 

 

 

 

 

 

 

 

ClearBit<N>

 

Description

 

Clears an actual I/O bit or virtual I/O bit.  Note that actual IO bits must be previously defined as an output, see SetBitDirection

Parameters

<N>

 

Bit number specified as a decimal number.  Valid range 0...2047.

 

 

Example

 

ClearBit0

 

 

 

 

 

ClearBitBuf<N>

 

Description

 

Inserts into the coordinated move buffer a command to clear an IO bit  (actual IO bits must be defined as an output, see SetBitDirection). 

Parameters

<N>

 

Bit Number to clear.  Valid Range 0...2047.

 

 

Example

 

ClearBitBuf0

 

 

 

 

ClearFlashImage

 

Description

 

Prepare to download FLASH firmware image.  Sets entire RAM flash image to zero

Parameters

 

None.

 

Example

 

ClearFlashImage

 

 

 

 

 

CommutationOffset<N>=<X>

or

CommutationOffset<N>

 

Description

 

Get or Set 3 or 4 phase commutation offset.  When brushless commutation is performed, the desired Output Magnitude is distributed and applied to the various motor coils as a function of position.  The commutation offset shifts the manner in which the Output Magnitude is applied.

 

For a 3 phase brushless output mode, commutation offset is used in the following manner.

 

PhaseA = OutputMagnitude * sin((Position+CommutationOffset)*invDistPerCycle*2π)

PhaseB = OutputMagnitude * sin((Position+CommutationOffset)*invDistPerCycle*2π + 2π/3)

PhaseC = OutputMagnitude * sin((Position+CommutationOffset)*invDistPerCycle*2π + 4π/3)

 

 

For a 4 phase brushless output mode, commutation offset is used in the following manner.

 

PhaseA = OutputMagnitude *  sin((Position+CommutationOffset)*invDistPerCycle*2π)

PhaseB = OutputMagnitude * cos((Position+CommutationOffset)*invDistPerCycle*2π)

 

See also invDistPerCycle and Configuration Parameters.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<X>

 

Offset in units of Position.

 

 

Example

 

CommutationOffset0=100.0

 

 

 

 

 

 

 

ConfigSpindle <T> <A> <U> <W> <C>

 

Description

 

Enables/Disables and configures the firmware to monitor Spindle Speed and Position to allow reporting of Spindle Speed and to perform Threading operations.

 

See also: TrigThread and GetSpindleRPS

 

Parameters

<T>

 

Spindle Sensor Type.  0 - disables spindle measurement, 1 - defines the sensor type as a quadrature encoder . 

 

<A>

 

Axis - Defines the Axis Channel that will maintain the Spindle Position.  Note this is not a Encoder input channel.  Rather it is the Axis Channel that has a Encoder input Channel defined.  Valid range 0 ...7.

 

<U>

 

Update Time - delta time for measurement.  This is the amount of time between Spindle Position samples used to calculate the current speed.  Speed = Delta Position/Delta Time.  A longer time period will allow for a more accurate speed measurement, especially at low speeds and if a low resolution encoder is used.  A shorter Update Time will make the speed measurement to be more responsive as it changes.  Units of seconds.   Typical value 0.2 seconds

 

<W>

 

Tau - low pass filter time constant for threading.  Pseudo Time along a time dependent trajectory path is adjusted based on spindle position.  The Pseudo Time is smoothed using a low pass filter with a time constant of Tau to avoid making too abrupt changes of position, velocity or acceleration.  Units of seconds.  Typical value 0.1 seconds

 

<C>

 

Counts per Revolution.  Number of encoder counts per full revolution of the Spindle.

 

 

 

 

Example

 

ConfigureSpindle 1 0 0.2 0.1 4096.0

 

 

 

 

 

D<N>=<M>

or

D<N>

 

Description

 

Get or Set PID derivative Gain. 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Derivative Gain value.  The units of the derivative gain are in Output Units/Position Units x Servo Sample Time.

 

 

Example

 

D0=10.0

 

 

 

 

 

DAC<N> <M>

 

Description

 

DAC to value.  DACs 0...3 have  ±10 Volt ranges, DACs 4...7 have 0...4 Volt ranges.  See also Analog Status Screen.

Parameters

<N>

 

DAC channel to set.  Valid Range 0...7.

 

 

<M>

 

DAC value to set in counts.  Valid Range -2048...2047.

 

 

Example

 

DAC0=2000

 

 

 

 

 

DeadBandGain<N>=<M>

or

DeadBandGain<N>

 

 

Description

 

Get or Set gain while error is within the deadband range.  See DeadBand Description.  See Servo Flow Diagram.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Gain to be applied.  A value of 1.0 will have normal gain while within the deadband.   A value less than 1.0 will have reduced gain within the deadband.

 

 

Example

 

DeadBandGain0=0.5

 

 

 

 

 

DeadBandRange<N>=<M>

or

DeadBandRange<N>

 

 

Description

 

Get or Set range where deadband gain is to be applied.  See DeadBand Description.  See Servo Flow Diagram.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

±Range in Position units,

 

 

Example

 

DeadBandRange0=1.0

 

 

 

 

 

DefineCS<X> <Y> <Z> <A> <B> <C>

or

DefineCS

 

 

Description

 

Set or get the defined X Y Z A B C coordinate system axis assignments for up to 6 axes of coordinated motion.  Unused axis are assigned an axis channel of -1. 

See also Coordinated Motion.

Parameters

<X>

 

Assigned Axis channel number for X.  Valid range -1 ... 7. 

Use -1 if axis is not defined.

 

 

<Y>

 

Assigned Axis channel number for Y.  Valid range -1 ... 7. 

Use -1 if axis is not defined.

 

 

<Z>

 

Assigned Axis channel number for Z.  Valid range -1 ... 7. 

Use -1 if axis is not defined.

 

 

<A>

 

Assigned Axis channel number for A.  Valid range -1 ... 7. 

Use -1 if axis is not defined.

 

 

<B>

 

Assigned Axis channel number for B.  Valid range -1 ... 7. 

Use -1 if axis is not defined.

 

 

<C>

 

Assigned Axis channel number for C.  Valid range -1 ... 7. 

Use -1 if axis is not defined.

 

 

 

Example

 

 

DefineCS

 

DefineCS = 0 1 2 3 4 -1

 

 

DefineCSEX<X> <Y> <Z> <A> <B> <C> <U> <V>

or

DefineCSEX

 

 

Description

 

Set or get the defined X Y Z A B C coordinate system axis assignments for up to 8 axes of coordinated motion.  Unused axis are assigned an axis channel of -1. 

See also Coordinated Motion.

Parameters

<X>

 

Assigned Axis channel number for X.  Valid range -1 ... 7. 

Use -1 if axis is not defined.

 

 

<Y>

 

Assigned Axis channel number for Y.  Valid range -1 ... 7. 

Use -1 if axis is not defined.

 

 

<Z>

 

Assigned Axis channel number for Z.  Valid range -1 ... 7. 

Use -1 if axis is not defined.

 

 

<A>

 

Assigned Axis channel number for A.  Valid range -1 ... 7. 

Use -1 if axis is not defined.

 

 

<B>

 

Assigned Axis channel number for B.  Valid range -1 ... 7. 

Use -1 if axis is not defined.

 

 

<C>

 

Assigned Axis channel number for C.  Valid range -1 ... 7. 

Use -1 if axis is not defined.

 

 

<U>

 

Assigned Axis channel number for U.  Valid range -1 ... 7. 

Use -1 if axis is not defined.

 

 

<V>

 

Assigned Axis channel number for V.  Valid range -1 ... 7. 

Use -1 if axis is not defined.

 

 

 

Example

 

 

DefineCSEX

 

DefineCSEX = 0 1 2 3 4 5 6 7

 

 

Dest<N>=<M>

or

Dest<N>

 

Description

 

Set or get the last commanded destination for an axis.  The Dest (destination) is normally set (or continuously updated) as the result of a motion command (Move, Jog, or Coordinated motion) , but may also be set with this command if no motion is in progress.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Value to set in Position units.  Valid range - any.

 

 

Example

 

Dest0=100

or

Dest0

 

 

 

 

 

 

DisableAxis<N>

 

Description

 

Kill any motion and disable motor.  Any associated output PWM channels for the axis will be set to 0R mode.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

Example

 

DisableAxis0

 

 

 

 

Echo <S>

 

Description

 

Echo character string back to the Console Screen.

Parameters

<S>

 

Any character string < 80 characters

 

Example

 

Echo Hello

 

 

 

 

 

EnableAxis<N>

 

Description

 

Set an Axis' destination to the Current Measured Position and enable the axis.  See also EnableAxisDest to explicitly set the desired destination for the axis.  Note for a MicroStepper Axis (which normally has no measured position) this command will leave the Axis' destination unchanged. .

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

Example

 

Enable0

 

 

 

 

 

EnableAxisDest<N> <M>

 

Description

Set an Axis' destination to the specified position and enable the axis.  See also EnableAxis to set the desired destination to the current measured position.

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Destination for the axis.  Position units.  Valid range - any.

 

 

Example

 

EnableAxisDest0 1000.0

 

 

 

 

 

Enabled<N>

 

Description

 

Display whether the specified axis is enabled, 1 - if currently enabled, 0 - if not enabled. 

Note: to enable an axis use EnableAxis or EnableAxisDest.

 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

Example

 

Enabled0

 

 

 

 

EndRapidBuf

 

Description

Inserts into coordinated move buffer a command to indicate Rapid has been completed and to no longer use Rapid FRO.

Parameters

None

 

Example

 

EndRapidBuf

 

 

 

 

EntryPoint<N> <H>

 

Description

 

Set execution start address of user thread to specified address.  This operation if normally performed automatically when downloading a user program.

Parameters

<N>

 

User Thread number to set.  Decimal number.  Valid range 1...7.

 

 

<H>

 

Start address.  32 bit Hex number.

 

 

Example

 

Entrypoint1 80030000

 

 

 

 

 

ExecBuf

 

Description

 

Execute the contents of the coordinated motion buffer.  Use CheckDoneBuf to determine when the buffer has been fully executed. See also Coordinated Motion.

Parameters

None

 

 

Example

 

ExecBuf

 

 

 

 

 

 

ExecTime

 

Description

 

Displays the amount of the Coordinated Motion Buffer that has been already executed in terms of TimeKMotion contains a Coordinated Motion Buffer where move segments (linear and arcs) and I/O commands may be downloaded and executed in real time.  This command is useful for determining how long before the Coordinated Motion Buffer will complete.  For example, if a number of segments have been downloaded where their total execution time is 10 seconds, and they are currently in progress of being executed, and the ExecTime command reports that 8 seconds worth of segments have been executed, then the remaining time before the queue completes (or starves for data) would be 2 seconds.   This command is useful for applications where it is important not to download data too far ahead so changes to the Trajectory may be made.  The value returned is a floating point decimal value in Seconds with 3 decimal places.  If the Coordinated Motion has already completed the amount of time will be a negative value whose magnitude is the total time that was executed.  See also Coordinated Motion.

 

Displays:

   

     Executed time in seconds as a floating point decimal number with 3 decimal places

     ie.   10.123

     If the buffer has already completed the value will be negative

     ie.  -10.123

Parameters

None

 

Example

 

ExecTime

 

 

 

 

Execute<N>

 

Description

 

Begin execution of thread.  Execution begins at the previously specified thread entry point. 

See also C Program Screen.

 

Parameters

<N>

 

Thread number to begin execution.  Decimal number.  Valid range 1...7.

 

 

 

Example

 

Execute1

 

 

 

 

 

FFAccel<N>=<M>

or

FFAccel<N>

 

Description

 

Set or get Acceleration feed forward for axis.

See also feed forward tuning.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Feed forward value.  units are in Output units per Input Units per sec2.

 

 

Example

 

FFAccel0=100.0

or

FFAccel0

 

 

 

 

 

FFVel<N>=<M>

or

FFVel<N>

 

Description

 

Set or get Velocity feed forward for axis.

See also feed forward tuning.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Feed forward value.  units are in Output units per Input Units per sec.

 

 

Example

 

FFVel0=100.0

or

FFVel0

 

 

 

Flash

 

Description

 

Flash current user programs, persistent memory area,  all axes configurations, tuning, and filter parameters to non-volatile memory.  The entire state of the KMotion is saved to FLASH memory.  Any active user programs will be paused during the flash operation

Parameters

 

None

 

 

Example

 

Flash

 

 

FlushBuf

 

Description

 

Informs KFLOP that the Coordinated Motion Buffer has been Flushed.  This permits KFLOP to execute to the end of the buffer without performing protection against buffer starvation which would normally perform Feed Rate reduction in an attempt to avoid buffer underflow. 

Parameters

 

None

 

 

Example

 

FlushBuf

 

 

FPGA<N> <M>

 

Description

 

Directly write an 8-bit value to an FPGA register.  Should be only used with caution.  

Parameters

<N>

 

FPGA Register address to write as a decimal number.  Valid range 0...1023.

 

<M>

 

8-bit value as a decimal number. Valid range 0...255.

 

 

Example

 

FPGA 261 192

 

 

FPGAW<N> <M>

 

Description

 

Directly write a 16-bit value to an FPGA register.  Should be only used with caution.  

Parameters

<N>

 

FPGA Register address to write as a decimal number.  Valid range 0...1023.

 

<M>

 

16-bit value as a decimal number. Valid range 0...65536.

 

 

Example

 

FPGAW 5 263

 

 

 

GatherMove<N> <M> <L>

 

Description

 

Performs a profiled move on an axis of the specified distance while gathering the specified number of points of data.  This command is used while gathering data for the Step Response Screen plots.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Distance to move.  Units are Position Units.  Valid Range - any.

 

 

<L>

 

Number of servo samples to gather.  Valid Range - 1...40000

 

 

Example

 

GatherMove0 1000.0 2000

 

 

 

 

 

GatherStep<N> <M> <L>

 

Description

 

Performs a step on an axis of the specified distance while gathering the specified number of points of data.  This command is used while gathering data for the Step Response Screen plots.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Distance to step.  Units are Position Units.  Valid Range - any.

 

 

<L>

 

Number of servo samples to gather.  Valid Range - 1...40000

 

 

Example

 

GatherStep0 1000.0 2000

 

 

 

 

GetBitDirection<N>

 

Description

 

Displays whether an IO bit N (0..30) is defined as input (0) or output (1)

Parameters

<N>

 

I/O bit number.  Valid range 0...30

 

 

Example

 

GetBitDirection0

 

 

 

 

 

GetGather <N>

 

Description

 

Upload N data points from previous GatherMove or GatherStep command.  Captured commanded destination, measured position, and output are uploaded as hex values (that represent binary images of 32-bit floating point values).  Eight samples (24 values) per line.

Parameters

<N>

 

Number of points to upload.  Valid range 1...40000.

 

 

 

Example

 

GetGather 1000

 

 

 

 

 

GetGatherDec<N>

 

Description

 

Reads a single word from the Gather Buffer at the specified offset.  A single 32-bit value displayed as a signed decimal integer number will be displayed.

Parameters

<N>

 

Offset into gather buffer, specified as a decimal offset of 32 bit words.  Valid range 0...1999999

 

 

Example

 

GetGatherDec 1000

 

 

 

 

 

GetGatherHex<N> <M>

 

Description

 

Reads multiple words from the Gather Buffer beginning at the specified offset.  Hexadecimal values will be displayed that will represent binary images of the contents of the gather buffer as 32 bit words.

 

Parameters

<N>

 

Offset into gather buffer, specified as a decimal offset of 32 bit words.  Valid range 0...1999999

 

 

<M>

 

Number of 32 bit words to display.  Decimal integer.  Valid range 1...2000000

 

 

Example

 

GetGatherHex 0 100

 

 

 

 

 

GetInject<N> <M>

 

Description

 

Display results of signal injection and gathering.  Bode Plot measurement involves injecting a signal and measuring the response for each of N_CPLX (2048) samples.  This command gets the result from the injection.  3 values per sample are uploaded.  Injection value, position response (relative to destination), and servo output.  All 3 values are printed as hexadecimal values which represent the image of a 32-bit floating point value.  8 samples (24 hex values) are printed per line.

Parameters

None

 

 

Example

 

GetInject

 

 

 

 

 

GetPersistDec<N>

 

Description

 

Read a single word from the Persist Array at the specified offset a single 32-bit value displayed as a signed decimal number.  The persist array is a general purpose array of N_USER_DATA_VARS (200) 32-bit values that is accessible to the host as well as KMotion C Programs.  It may be used to share parameters, commands, or information between programs. 

 

C Programs may access this array as the integer array:

persist.UserData[n];

 

It also resides in the KMotion Persist memory structure so that if memory is flashed, the value will be present at power up.

See also GetPersistHex, SetPersistDec, SetPersistHex

Parameters

<N>

 

Offset into the integer array.  Valid range 0...199.

 

 

 

Example

 

GetPersistDec 10

 

 

 

 

 

GetPersistHex<N>

 

Description

 

Read a single word from the Persist Array at the specified offset a single 32-bit value displayed as an unsigned hexadecimal number.  The persist array is a general purpose array of N_USER_DATA_VARS (200) 32-bit values that is accessible to the host as well as KMotion C Programs.  It may be used to share parameters, commands, or information between programs. 

 

C Programs may access this array as the integer array:

persist.UserData[n];

 

It also resides in the KMotion Persist memory structure so that if memory is flashed, the value will be present at power up.

See also GetPersistDec, SetPersistDec, SetPersistHex

Parameters

<N>

 

Offset into the integer array.  Valid range 0...199.

 

 

 

Example

 

GetPersistHex 10

 

 

 

 

GetSpindleRPS

 

Description

 

Reports the current Spindle Speed in revolutions per second.

 

See also ConfigSpindle and TrigThread

Parameters

 

Example

 

GetSpindleRPS

 

 

 

 

 

GetStatus

 

Description

 

Upload Main Status record in hex format.  KMotion provides a means of quickly uploading the most commonly used status.  This information is defined in the PC-DSP.h header file as the MAIN_STATUS structure.  The entire stucture is uploaded as a binary image represented as 32-bit hexadecimal values.

Parameters

 

None

 

 

Example

 

GetStatus

 

 

 

 

GetStopState

 

Description

 

Reports the state of any feedhold stop in progress.  0 = not stopping, 1=stopping a coord motion, 2=stopping an independent motion of one or more axes, 3=fully stopped, 4=independent motion of all related axes fully  stopped.  This returns the KFLOP C program variable - CS0_StoppingState.  A feedhold stop can be initiated from C code or from the Console Command StopImmediate

Parameters

 

None

 

 

Example

 

GetStopState

 

 

 

 

I<N>=<M>

or

I<N>

 

Description

 

Get or Set PID Integral Gain. 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Integral Gain value.  The units of the derivative gain are in Output Units x Position Units x Servo Sample Time.

 

 

Example

 

I0=10.0

or

I0

 

 

 

 

 

IIR<N> <M>=<A1> <A2> <B0> <B1> <B2>

or

IIR<N> <M>

 

 

Description

 

Set or get IIR Z domain servo filter.

See also IIR Filter Screen

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Filter number for axis. Valid range 0...2.

 

 

<A1> <A2> <B0> <B1> <B2>

 

 

Filter coefficients represented as floating point decimal values.

 

 

 

Example

 

IIR0 0=1.5 2.5 -3.5 4.5 5.5

 

or

 

IIR0 0

 

 

 

 

 

Inject<N> <F> <A>

 

Description

 

A Inject random stimulus into an axis with the specified cutoff frequency and amplitude.  Useful for generating Bode plots.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<F>

 

Cuttoff Frequency in Hz.  Valid range - any.

 

 

<A>

 

Amplitude in position units.  Valid range - any.

 

 

Example

 

Inject0 100.0 20.0

 

 

 

 

 

InputChan<M> <N>=<C>

or

InputChan<M> <N>

 

Description

 

Get or Set the first or second Input Channel of an axis.   See description of this parameter on the Configuration Screen.

Parameters

<M>

 

Selected input channel.  Valid range 0...1.

 

 

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<C>

 

Channel number to assign.  Valid range 0...7.

 

 

Example (set first input channel of axis 3 to 3)

 

InputChan0 3=3

or

InputChan0 3

 

 

 

 

 

 

InputGain<M> <N>=<G>

or  

InputGain<M> <N>

 

Description

 

Set or get first or second Input Gain of an axis.  See description of this parameter on the Configuration Screen.

Parameters

<M>

 

Selected input channel.  Valid range 0...1.

 

 

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<C>

 

Input Gain.  Valid range - any.

 

 

Example

 

InputGain0 3=1.0

 

 

 

 

 

 

 

InputMode<N>=<M>

or

InputMode<N>

 

Description

 

Set or get the position input mode for an axis.  See description of this parameter on the Configuration Screen.

 

Valid modes are (from PC-DSP.h):

 

#define NO_INPUT_MODE 0

#define ENCODER_MODE 1

#define ADC_MODE 2

#define RESOLVER_MODE 3

#define USER_INPUT_MODE 4

 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Mode.  Valid range 1...4

 

 

Example

 

SetInputMode0=1

 

 

 

 

 

InputOffset<M> <N>=<O>

or

InputOffset<M> <N>

 

Description

 

Set or get first or second Input Offset of an axis.  See description of this parameter on the Configuration Screen.

Parameters

<M>

 

Selected input channel.  Valid range 0...1.

 

 

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<O>

 

Input Offset.  Valid range - any.

 

 

Example

 

InputOffset0 3=0.0

 

 

 

 

 

InvDistPerCycle<N>=<X>

 

Description

 

Get or Set distance per cycle (specified as an inverse) of an axis.  May specify the cycle of either a Stepper of Brushless Motor.

See description of this parameter on the Configuration Screen.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<X>

 

Inverse (reciprocal) of distance for a complete cycle.  Inverse position units.  Should be specified exactly or with very high precision (double precision accuracy ~ 15 digits).  Valid range - any.

 

 

Example

 

InvDistPerCycle0=0.05

 

 

 

 

 

Jerk<N>=<J>

or

Jerk<N>

 

Description

 

Get or Set the max jerk  (for independent moves and jogs)

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<J>

 

The max Jerk.  Units are in  Position units per sec3

 

 

Example

 

Jerk0=10000.0

 

 

 

 

 

Jog<N>=<V>

 

Description

 

Move at constant velocity.  Uses Accel and Jerk parameters for the axis to accelerate from the current velocity to the specified velocity.  Axis should be already enabled.  Specify zero velocity to decelerate to a stop.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<V>

 

new Velocity in position units/second.  Valid range - any.

 

 

Example

 

Jog0=-200.5

 

 

 

 

 

Kill<N>

 

Description

 

Stop execution of a user thread.

Parameters

<N>

 

Thread to halt.  Valid range 1..7

 

 

Example

 

Kill0

 

 

 

 

 

Lead<N>=<M>

or

Lead<N>

 

Description

 

Set or get Lead Compensation for an axis.  Lead Compensation is used to compensate for lag caused by motor inductance. 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Lead Compensation. Valid range - any.

 

 

Example

 

Lead0=10.0

or

Lead0

 

 

 

 

LimitSwitch<N>=<H>

 

Description

 

Configures Limit Switch Options.  Specify Hex value where:

 

See also Configuration Screen.

 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<H>

 

32-bit hexadecimal value:

Bit 0 1=Stop Motor on Neg Limit, 0=Ignore Neg limit

Bit 1 1=Stop Motor on Pos Limit, 0=Ignore Pos limit

Bit 2 Neg Limit Polarity 0=stop on high, 1=stop on low

Bit 3 Pos Limit Polarity 0=stop on high, 1=stop on low

Bits 4-7 Action - 0 Kill Motor Drive

                             1 Disallow drive in direction of limit

                             2 Stop movement

Bits 16-23 Neg Limit Bit number

Bits 24-31 Pos Limit Bit number

 

 

 

Example

 

LimitSwitch2 0C0D0003

 

 

 

 

 

Linear <X0> <Y0> <Z0> <A0> <B0> <C0> <X1> <Y1> <Z1> <A1> <B1> <C1>  <a> <b> <c> <d> <tF>

 

Description

 

Place linear (in 6 dimensions) interpolated move into the coordinated motion buffer.  See also KMotion Coordinated Motion.  A path through space is defined where x, y, z, a, b, and c are changing in a linear manner.  A parametric equation is defined which describes which portion of the path as well as how as a function of time the path is to be traversed.

 

Although the Linear command may be sent directly, the Linear command is normally generated automatically to perform a planned trajectory by the coordinated motion library or GCode.

 

(X0,Y0,Z0,A0,B0,C0) - beginning of path

 

(X1,Y1,Z1,A1,B1,C1) - end of path

 

 

3rd order parametric equation where

p = a t3 + b t2 + c t + d

p is the position along the path as a function of time. When p=0 the (x,y,z,A) position will be at the beginning of the path.  When p=1 the (x,y,z,A) position will be at the end of the path.

 

This motion segment will be performed over a time period of tF, where t varies from 0 ... tF.   Note that it is not necessary that p vary over the entire range of 0 ... 1.   This is often the case when there may be an acceleration, constant velocity, and deceleration phase over the path.  ie: t might vary from 0.0->0.1 where p might vary from  0.3->0.7.

 

Parameters

<X0> - X begin point

<Y0> - Y begin point

<Z0 - Z begin point

<A0 - A begin point

<B0 - B begin point

<C0 - C begin point

<X1> - X end point

<Y1> - Y end point

<Z1 - Z end point

<A1 - A end point

<B1 - B end point

<C1 - C end point

<a> - parametric equation t3 coefficient

<b> - parametric equation t2 coefficient

<c> - parametric equation t coefficient

<d> - parametric equation constant coefficient

<tF> -  time for segment

 

 

Example

 

Linear 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0

 

 

 

 

 

 

LinearEx <X0> <Y0> <Z0> <A0> <B0> <C0>  <U0> <V0> <X1> <Y1> <Z1> <A1> <B1> <C1> <U1> <V1>  <a> <b> <c> <d> <tF>

 

Description

 

Place linear (in 8 dimensions) interpolated move into the coordinated motion buffer.  See also KMotion Coordinated Motion.  A path through space is defined where x, y, z, a, b, c, u and v are changing in a linear manner.  A parametric equation is defined which describes which portion of the path as well as how as a function of time the path is to be traversed.

 

Although the LinearEx command may be sent directly, the LinearEx command is normally generated automatically to perform a planned trajectory by the coordinated motion library or GCode, however currently the GCode Interpreters available only support 6 axes of simultaneous motion.

 

(X0,Y0,Z0,A0,B0,C0,U0,V0) - beginning of path

 

(X1,Y1,Z1,A1,B1,C1,U1,V1) - end of path

 

 

3rd order parametric equation where

p = a t3 + b t2 + c t + d

p is the position along the path as a function of time. When p=0 the (x,y,z,A) position will be at the beginning of the path.  When p=1 the (x,y,z,A) position will be at the end of the path.

 

This motion segment will be performed over a time period of tF, where t varies from 0 ... tF.   Note that it is not necessary that p vary over the entire range of 0 ... 1.   This is often the case when there may be an acceleration, constant velocity, and deceleration phase over the path.  ie: t might vary from 0.0->0.1 where p might vary from  0.3->0.7.

 

Parameters

<X0> - X begin point

<Y0> - Y begin point

<Z0 - Z begin point

<A0 - A begin point

<B0 - B begin point

<C0 - C begin point

<U0 - U begin point

<V0 - V begin point

<X1> - X end point

<Y1> - Y end point

<Z1 - Z end point

<A1 - A end point

<B1 - B end point

<C1 - C end point

<U1 - U end point

<V1 - V end point

<a> - parametric equation t3 coefficient

<b> - parametric equation t2 coefficient

<c> - parametric equation t coefficient

<d> - parametric equation constant coefficient

<tF> -  time for segment

 

 

Example

 

LinearEx 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0

 

 

 

 

 

LinearHex <X0> <Y0> <Z0> <A0> <B0> <C0> <X1> <Y1> <Z1> <A1> <B1> <C1>  <a> <b> <c> <d> <tF>

 

Description

 

Place linear (in 6 dimensions) interpolated move into the coordinated motion buffer.    This command is exactly the same as the Linear command above, except all 17 parameters are specified as 32-bit hexadecimal values which are the binary images of 32-bit floating point values.  When generated by a program this is often faster, simpler,  and more precise than decimal values.  See also KMotion Coordinated Motion.

Parameters

See above.

 

 

 

Example

 

LinearHex 0 0 0 0 0 0 3F800000 3F800000 3F800000 3F800000 3F800000 3F800000 0 0 3F800000 0 3F800000

 

 

 

 

 

 

LinearHexEx <X0> <Y0> <Z0> <A0> <B0> <C0>  <U0> <V0> <X1> <Y1> <Z1> <A1> <B1> <C1> <U1> <V1>  <a> <b> <c> <d> <tF>

 

Description

 

Place linear (in 8 dimensions) interpolated move into the coordinated motion buffer.    This command is exactly the same as the LinearEx command above, except all 21 parameters are specified as 32-bit hexadecimal values which are the binary images of 32-bit floating point values.  When generated by a program this is often faster, simpler,  and more precise than decimal values.  See also KMotion Coordinated Motion.

Parameters

See above.

 

 

 

Example

 

LinearHexEx 0 0 0 0 0 0 0 0 3F800000 3F800000 3F800000 3F800000 3F800000 3F800000 3F800000 3F800000 0 0 3F800000 0 3F800000

 

 

 

 

 

LinHex1 <X1> <Y1> <Z1> <A1> <B1> <C1>  <a> <b> <c> <d> <tF>

 

Description

 

Place linear (in 6 dimensions) interpolated move into the coordinated motion buffer.  This command is exactly the same as the LinearHex command above, except the beginning point is not specified and is assumed to be the endpoint of the previous LinearHex or LinHex1 command.  See also KMotion Coordinated Motion.

Parameters

See above.

 

 

 

Example

 

LinHex1 3F800000 3F800000 3F800000 3F800000 3F800000 3F800000 0 0 3F800000 0 3F800000

 

 

 

 

LinHex2 <a> <b> <c> <d> <tF>

 

Description

 

Place linear (in 6 or 8 dimensions) interpolated move into the coordinated motion buffer.  This command is exactly the same as the LinearHex or LinearHexEx command above, except neither the beginning or ending point is specified and is assumed to be the same as the most recent LinearHex, LinearHexEx, LinHex1, or LinHex2,   command.  This command can be used when there are more than one phases (ie Jerk, acceleration, constant velocity, etc. that occur along a single linear segment).  See also KMotion Coordinated Motion.

Parameters

See above.

 

 

 

Example

 

LinHex2  0 0 3F800000 0 3F800000

 

 

 

 

LinHexEx1 <X1> <Y1> <Z1> <A1> <B1> <C1> <U1> <V1>  <a> <b> <c> <d> <tF>

 

Description

 

Place linear (in 8 dimensions) interpolated move into the coordinated motion buffer.  This command is exactly the same as the LinearHexEx command above, except the beginning point is not specified and is assumed to be the endpoint of the previous LinearHexEx or LinHexEx1 command.  See also KMotion Coordinated Motion.

Parameters

See above.

 

 

 

Example

 

LinHexEx1 3F800000 3F800000 3F800000 3F800000 3F800000 3F800000 3F800000 3F800000 0 0 3F800000 0 3F800000

 

 

 

 

 

 

LoadData <H> <N>

<B> <B> <B> <B> <B> ...

 

Description

 

Store data bytes into memory beginning at specified address for N bytes.  The data must follow with up to N_BYTES_PER_LINE (64) bytes per line.  This command is normally only used by the COFF loader.  Since this command spans several lines, it may only be used programatically in conjunction with a KMotionLock or WaitToken command so that it is not interrupted. 

Parameters

<H>

 

32-bit hexadecimal address

 

 

<N>

 

Number of bytes to follow and to be stored

 

 

<B> <B> <B> <B> <B> ...

 

Bytes to store.  2 hexadecimal digits per byte, separated with a space.

 

 

Example

 

LoadData 80030000 4

FF FF FF FF

 

 

 

 

 

LoadFlash<H> <N>

<B> <B> <B> <B> <B> ...

 

Description

 

Store data into FLASH image.   Only by KMotion for downloading a new firmware version.  Store data bytes into memory beginning at specified address for N bytes.  The data must follow with up to N_BYTES_PER_LINE (64) bytes per line.  This command is normally only used by the COFF loader.  Since this command spans several lines, it may only be used programmatically in conjunction with a KMotionLock or WaitToken command so that it is not interrupted. 

Parameters

<H>

 

32-bit hexadecimal address

 

 

<N>

 

Number of bytes to follow and to be stored

 

 

<B> <B> <B> <B> <B> ...

 

Bytes to store.  2 hexadecimal digits per byte, separated with a space.

 

 

Example

 

LoadFlash FF00 4

FF FF FF FF

 

 

 

 

MasterAxis<N>=<M>

or

MasterAxis<N>

 

Description

 

Sets or gets the axis <M> to which the current axis <N> is to be slaved.  The current axis becomes a slave and will follow the motion of the specified Master Axis.  More than one axis can be slaved to a single master axis if desired.  When slaved, changes in the commanded destination of the master axis will be mirrored as changes in the slaved axis's destination however scaled by the SlaveGain (as specified in the Slave Axis).  The SlaveGain my be negative if opposing motion is desired.

 

Setting the Master Axis value to -1 disables the Slave mode.

Parameters

<N>

 

Selected Axis for command.  Valid range 0 ... 7.

 

 

<M>

 

Master Axis or -1 to disable.  Valid range -1 ... 7.

 

 

Example (set axis 1 to follow axis 0)

 

MasterAxis1=0

or

MasterAxis

 

 

 

 

 

 

MaxErr<N>=<M>

or

MaxErr<N>

 

Description

 

Set or get Maximum Error for axis (Limits magnitude of error entering PID).

See Servo Flow Diagram and Step Response Screen for more information.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Maximum Error.  Valid range - any positive value.  Set to a large value to disable.

 

 

Example

 

MaxErr0=100.0

or

MaxErr0

 

 

 

 

 

 

MaxFollowingError<N>=<M>

or

MaxFollowingError<N>

 

Description

 

Set or get the maximum allowed following error before disabling the axis.   

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Maximum Following Error.  Valid range - any positive value.  Set to a large value to disable.

 

 

Example

 

MaxFollowingError0=100.0

or

MaxFollowingError0

 

 

 

 

MaxI<N> <M>

 

Description

 

Set or get Maximum Integrator "wind up" for axis.  Integrator saturates at the specified value.

See also Servo Flow Diagram and Step Response Screen for further information.

 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Maximum Integrator value.  Valid range - any positive value.  Set to a large value to disable.

 

 

Example

 

MaxI0=100.0

or

MaxI0

 

 

 

 

 

MaxOutput<N>=<M>

or

MaxOutput<N>

 

Description

 

Set or get Maximum Output for an axis.  Limits magnitude of servo output.  Output saturates at the specified value.

See also Servo Flow Diagram and Step Response Screen for further information.

 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Maximum output value.  Valid range - any positive value.  Set to a large value to disable.

 

 

Example

 

MaxOutput0=100.0

or

MaxOutput

 

 

 

Move<N>=<M>

 

Description

 

Move axis to absolute position.  Axis should be already enabled.  Uses Vel, Accel and Jerk parameters for the axis to profile a motion from the current state to the specified position.

 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

new position in position units.  Valid range - any.

 

 

Example

Move0=100.1

 

 

 

 

MoveAtVel<N>=<M> <V>

 

Description

 

Move axis to absolute position at the specified Velocity.  Axis should be already enabled.  Uses Accel and Jerk parameters for the axis to profile a motion from the current state to the specified position.

 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

new position in position units.  Valid range - any.

 

 

<V>

 

Desired Velocity for the Motion.  Valid range - any.

 

 

Example

MoveAtVel0=100.1 30.0

 

 

 

 

MoveExp<N>=<D> <T>

 

Description

 

Moves axis in an exponential manner toward the Destination using Time Constant T.  The velocity of motion will be proportional to the distance from the Destination.  The distance to the Destination will be reduced by 63% (1/e) every Time Constant, T.  The Axis should be already enabled.  Honors the Vel and Accel axis parameters.

 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<D>

 

Destination in position units.  Valid range - any.

 

<T>

 

Time Constant Tau in seconde.  Valid range - any positive number.

 

 

Example

 

MoveExp0=1000 0.1

 

 

 

 

MoveRel<N>=<M>

 

Description

 

Move axis relative to current destination.  Same as Move command except specified motion is relative to current destination. 

Axis should be already enabled.  Uses Vel, Accel and Jerk parameters for the axis to profile a motion from the current state to the specified position.

 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Distance to move in position units.  Valid range - any.

 

 

Example

 

MoveRel0=100.1

 

 

 

 

 

MoveRelAtVel<N>=<M> <V>

 

Description

 

Move axis relative to current destination at the specified Velocity.  Same as MoveAtVel command except specified motion is relative to current destination.  Axis should be already enabled.  Uses Accel and Jerk parameters for the axis to profile a motion from the current state to the specified position.

 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

new position in position units.  Valid range - any.

 

 

<V>

 

Desired Velocity for the Motion.  Valid range - any.

 

 

Example

MoveRelAtVel0=100.1 30.0

 

 

 

 

MoveXYZABC <X> <Y> <Z> <A> <B> <C>

 

Description

 

Move the 4 axes defined to be x,y,z,A (each axis moves independently).  The defined coordinate system determines which axes channels are commanded to move.

Parameters

<X>

 

Position to move x axis.  Valid range - any.

 

 

<Y>

 

Position to move y axis.  Valid range - any.

 

 

<Z>

 

Position to move z axis.  Valid range - any.

 

 

<A>

 

Position to move a axis.  Valid range - any.

 

<B>

 

Position to move b axis.  Valid range - any.

 

<C>

 

Position to move c axis.  Valid range - any.

 

 

 

Example

 

MoveXYZABC 100.1 200.2 300.3 400.4 500.5 600.6

 

 

 

 

OpenBuf

 

Description

 

Clear and open the buffer for coordinated motion.

Parameters

None

 

Example

 

OpenBuf

 

 

 

 

OutputChan<M> <N>=<C>

or

OutputChan<M> <N>

 

Description

 

Get or Set the first or second Output Channel of an axis.   For Step/Dir and CL Step/Dir Output Mode Types the Pin Drive Mode is also encoded in this value.  For example adding 8 to the device channel number will drive in TTL mode instead of Open Collector mode.  See description of this parameter on the Configuration Screen and for Step/Dir and CL Step/Dir Output Mode see here.

Parameters

<M>

 

Selected input channel.  Valid range 0...1.

 

 

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<C>

 

Channel number to assign.  Valid range depends on Output Mode Type. Max Range for all Types 0...63.

 

 

Example (set first output channel of axis 3 to 3)

 

OutputChan03=3

 

 

 

 

 

OutputGain<N>=<G>

or

OutputGain<N>

 

Description

 

Get or Set the Output Gain of an axis.  For Axes of  Step/Dir, CL Step Dir, or MicroStep output mode, the output motion can be scaled or reversed.  Normally there is no need to use a value other than -1.0 or +1.0.  For DAC Servo output mode the output signal (DAC) can be scaled or reversed.   Again, normally there is no need to use a value other than -1.0 or +1.0.  In other output modes the OutputGain value will have no effect.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

<G>

 

Gain value.  Valid range any floating point value.

 

 

Example

 

OutputGain0=-1.0

or

OutputGain0

 

 

 

 

OutputOffset<N>=<O>

or

OutputOffset<N>

 

Description

 

Get or Set the Output Offset of an axis.  For DAC Servo output mode the output (DAC) signal can be offset.   The Output Offset is applied after any Output Gain value.  The Output Offset can be used to reduce any DAC output offset or Amplifier input offset that may cause motor axis drift occurs when the DAC is commanded to zero (disabled).  In other output modes the OutputGain value will have no effect.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

<G>

 

Gain value.  Valid range any floating point value.

 

 

Example

 

OutputGain0=-1.0

or

OutputGain0

 

 

OutputMode<N>=<M>

or

OutputMode<N>

 

Description

 

Set or get the position output mode for an axis.  See description of this parameter on the Configuration Screen.

 

Valid modes are (from PC_DSP.h):

 

#define NO_OUTPUT_MODE 0

#define MICROSTEP_MODE 1

#define DC_SERVO_MODE 2

#define BRUSHLESS_3PH_MODE 3

#define BRUSHLESS_4PH_MODE 4

#define DAC_SERVO_MODE 5

#define STEP_DIR_MODE 6

#define CL_STEP_DIR_MODE 7

#define CL_MICROSTEP_MODE 8

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Mode.  Valid range 1...4

 

 

Example

SetOutputMode0=1

 

 

 

P<N>=<M>

or

P<N>

 

Description

 

Get or Set PID Proportional Gain. 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Proportional Gain value.  The units of the derivative gain are in Output Units/Position Units.

 

 

Example

P0=10.0

 

 

 

 

 

Pos<N>=<P>

or

Pos<N>

 

Description

 

Set or get the measured position of an axis.  Note setting the current position may effect the commutation of any motors based on the position (an adjustment in the commutation offset may be required).

 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<P>

 

value to be stored into the current position.  units are position units.  Valid range - any.

 

 

Example

 

Pos0=100.0

 

 

 

 

 

ProgFlashImage

 

Description

 

Program entire FLASH image, downloaded using LoadFlash commands,  to FLASH Memory.

Parameters

None

 

Example

 

ProgFlashImage

 

 

 

PWM<N>=<M>

 

Description

 

Set PWM channel to locked anti-phase mode and to specified value.

See PWM Description and Analog Status Screen.

Parameters

<N>

 

PWM channel number.  Valid range 0...7

 

 

<M>

 

PWM value.  Valid range -255...255.

 

 

Example

 

PWM0=-99

 

 

 

 

PWMC<N>=<M>

 

Description

 

Set PWM channel to Current Mode and to specified value.  PWM Channel will operate in closed loop current mode.

See Analog Status Screen.

Parameters

<N>

 

PWM channel number.  Valid range 0...7

 

 

<M>

 

PWM value.  Valid range -1000...1000.  1 count = 35 Amps/1024 = 34.2ma

 

 

Example

 

PWM0=-99

 

 

 

 

 

PWMR<N>=<M>

 

Description

 

Set PWM channel to recirculate mode and to specified value.

See PWM Description and Analog Status Screen.

Parameters

<N>

 

PWM channel number.  Valid range 0...7

 

 

<M>

 

PWM value.  Valid range -511...511.

 

 

Example

 

PWMR0=-99

 

 

 

 

ReadBit<N>

 

Description

 

Displays whether an actual hardware I/O bit N (0...30) or Virtual IO bit (32...63) is high (1) or low (0) .  A bit defined as an output (See SetBitDirection) may also be read back.

Parameters

<N>

 

Bit number to read.  Valid range - 0...63

 

 

Example

 

ReadBit0

 

 

 

 

 

Reboot!

 

Description

 

Causes complete power up reset and re-boot from flash memory.

Parameters

None

 

 

Example

 

Reboot!

 

 

 

 

 

SetBit<N>

 

Description

 

Sets an actual hardware I/O bit N or Virtual IO bit to high (1) .

Parameters

<N>

 

Bit number to set.  Valid range 0...2047

 

Example

 

SetBit0

 

 

 

 

 

SetBitBuf<N>

 

Description

 

Inserts into the coordinated move buffer a command to set an IO bit  (actual IO bits must be defined as an output, see SetBitDirection). 

 

Parameters

<N>

 

Bit number to set.  Valid range 0...2047

 

 

Example

 

SetBitBuf0

 

 

 

 

 

SetBitDirection<N>=<M>

 

Description

 

Defines the direction of an I/O bit to be an input or output.

See also Digital I/O Screen.

Parameters

<N>

 

Bit number to assign.  Valid range 0...255

 

 

<M>

 

Direction 0 = input, 1 = output

 

 

Example

 

SetBitDirection0=1

 

 

 

 

SetFRO <F>

 

Description

Sets Hardware FRO (Feed Rate Override) in KFLOP which is the rate that the Coordinated Motion Buffer is executed. A value of 1.0 = Normal Feed Rate = real time = an advance of 90us of time every 90us Servo Sample Period. 

A negative FRO value will cause the Coordinated Motion Buffer to execute in reverse up until the beginning or until the point where Coordinated Motion Buffer data has been lost due to buffer wrapping (MAX_SEGMENTS is currently ~35,000 segments).  When approaching the point where previous data was lost, the FRO will be automatically reduced to zero in order to avoid an abrupt stop.  This will not occur (and should not be necessary) when approaching the actual beginning of the buffer because normal acceleration from a stop should exist.  In this case Time will stop abruptly when the beginning of the buffer is reached. 

In order to avoid an instantaneous change in velocity the FRO will be ramped from the current rate to the specified rate.  This command uses a default ramp rate that has been determined based on the Max Allowed Velocities, Accelerations, and Jerks of all the currently defined Coordinate Motion System Axes Channels.  In order to specify a different rate the SetFROwRate command may be used.

This command will not alter the rate of execution if the FeedHold mechanism is currently in effect.  See StopImmediate.  However the specified speed will be saved so that if FeedHold is eventually released, the rate will resume to this specified speed.  To change the FRO while in FeedHold use the SetFROTemp or SetFROwRateTemp commands instead.  Those commands were intended to be used while in Feed Hold and will not alter the rate that will be resumed after Feed Hold is released.

 

Parameters

<F>

 

Desired FRO Value.    1.0 corresponds to normal Real Time, 0.0 corresponds to fully stopped, negative values drive time in reverse.  Valid range -100...+100

 

 

Example

 

SetFRO 1.2

 

 

 

SetFROTemp <F>

 

Description

Sets Hardware FRO (Feed Rate Override) in KFLOP which is the rate that the Coordinated Motion Buffer is executed. A value of 1.0 = Normal Feed Rate = real time = an advance of 90us of time every 90us Servo Sample Period. 

This command is intended for temporary FRO changes while in Feed Hold. 

See SetFRO for additional Information.

 

Parameters

<F>

 

Desired FRO Value.    1.0 corresponds to normal Real Time, 0.0 corresponds to fully stopped, negative values drive time in reverse.  Valid range -100...+100

 

 

 

Example

 

SetFROTemp -0.2

 

 

 

 

SetFROwRate <F> <R>

 

Description

Sets Hardware FRO (Feed Rate Override) in KFLOP which is the rate that the Coordinated Motion Buffer is executed. A value of 1.0 = Normal Feed Rate = real time = an advance of 90us of time every 90us Servo Sample Period.  This command functions the same as the command SetFRO with the exception that the rate at which the FRO will be ramped to the new FRO may be controlled.  The ramp rate (rate-of-change-of-rate-of-time) to be used is determined from a user supplied Time Parameter.  The Time to ramp from FRO=0. to FRO=1.0.  See SetFRO for more information.

Parameters

<F>

 

Desired FRO Value.    1.0 corresponds to normal Real Time, 0.0 corresponds to fully stopped, negative values drive time in reverse.  Valid range -100...+100

 

 

<R>

 

Time to ramp from FRO=0.0 to FRO=1.0  Valid range any positive number.

 

 

Example

 

SetFROwRate 1.2 0.5

 

 

 

 

 

 

SetFROwRateTemp <F> <R>

 

Description

Sets Hardware FRO (Feed Rate Override) in KFLOP which is the rate that the Coordinated Motion Buffer is executed. A value of 1.0 = Normal Feed Rate = real time = an advance of 90us of time every 90us Servo Sample Period.  This command functions the same as the command SetFROTemp with the exception that the rate at which the FRO will be ramped to the new FRO may be controlled.  The ramp rate (rate-of-change-of-rate-of-time) to be used is determined from a user supplied Time Parameter.  The Time to ramp from FRO=0. to FRO=1.0.

This command is intended for temporary FRO changes while in Feed Hold. 

See SetFRO for additional Information.

 

Parameters

<F>

 

Desired FRO Value.    1.0 corresponds to normal Real Time, 0.0 corresponds to fully stopped, negative values drive time in reverse.  Valid range -100...+100

 

 

<R>

 

Time to ramp from FRO=0.0 to FRO=1.0  Valid range any positive number.

 

 

Example

 

SetFROwRateTemp -0.2 0.5

 

 

 

 

 

 

SetGatherDec <N> <M>

 

Description

 

Writes a single word to the Gather Buffer at the specified offset.  A single 32-bit value specified as a signed decimal integer number will be stored.

 

The corresponding value may be accessed by a KMotion user program using the pointer : gather_buffer.  This pointer should be cast as an integer pointer in order to reference values as integers and to use the same index.

 

See also GetGatherDec, GetGatherHex, SetGatherHex

 

Parameters

<N>

 

Offset into gather buffer, specified as a decimal offset of 32 bit words.  Valid range 0...1999999

 

 

<M>

 

Value to be stored.  Valid range -2147483648...2147483647

 

 

 

Example

 

SetGatherDec 1000 32767

 

 

 

 

 

SetGatherHex<N> <M>

<H> <H> <H> . . .

 

Description

 

Writes a multiple words to the Gather Buffer beginning at the specified offset.  32-bit values specified as a unsigned hexadecimal numbers must follow with 8 words per line separated with spaces.  Since this command spans several lines, it may only be used programmatically in conjunction with a KMotionLock or WaitToken command so that it is not interrupted. 

 

The corresponding values may be accessed by a KMotion user program using the pointer : gather_buffer.  This pointer should be cast as an integer pointer in order to reference values as integers and to use the same index.

 

See also GetGatherDec, GetGatherHex, SetGatherDec

 

Parameters

<N>

 

Offset into gather buffer, specified as a decimal offset of 32 bit words.  Valid range 0...1999999

 

 

<M>

 

Number of value to be stored, specified as a decimal number.  Valid range 0...19999999

 

 

<H> <H> <H> . . .

 

Values to be stored.  Specified as unsigned Hexadecimal values.  Valid range 0...FFFFFFFF.

 

 

 

Example

 

SetGatherHex 0 3

FFFFFFFF FFFFFFFF FFFFFFFF

 

 

 

 

 

SetPersistDec <O> <D>

 

Description

 

Write a single word into the Persistent UserData Array.   Persistent UserData Array is a general purpose array of 200 32-bit words that may be used as commands, parameters, or flags between any host applications or KMotion user programs.  The array resides in a persistent memory area, so that if a value is set as a parameter and the User Programs are flashed, the value will persist permanently. 

 

The corresponding value may be accessed by a KMotion user program as the integer variable : persist.UserData[offset].

See also GetPersistDec, GetPersistHex, SetPersistHex

 

 

Parameters

 

<O>

 

Offset into the user data array specified as a decimal number.  Valid Range 0 ... 199.

 

 

<D>

 

Value to be written to the array.  Specified a signed decimal number.  Valid Range -2147483648 ... 2147483647

 

 

Example

 

SetPersistDec 10 32767

 

 

 

 

 

SetPersistHex <O> <H>

 

Description

 

Write a single word into the Persistent UserData Array.   Persistent UserData Array is a general purpose array of 200 32-bit words that may be used as commands, parameters, or flags between any host applications or KMotion user programs.  The array resides in a persistent memory area, so that if a value is set as a parameter and the User Programs are flashed, the value will persist permanently. 

 

The corresponding value may be accessed by a KMotion user program as the integer variable : persist.UserData[offset].

See also GetPersistDec, GetPersistHex, SetPersistDec.

 

Parameters

<O>

 

Offset into the user data array specified as a decimal number.  Valid range 0 ... 199.

 

 

<H>

 

Value to be written to the array.  Specified an unsigned hexadecimal number.  Valid range 0...FFFFFFFF

 

 

Example

 

SetPersistHex 10 FFFFFFFF

 

 

 

SetRapidFRO <F>

 

Description

Sets Hardware RFRO (Rapid Feed Rate Override) in KFLOP which is the rate that the Coordinated Motion Buffer is executed. A value of 1.0 = Normal Feed Rate = real time = an advance of 90us of time every 90us Servo Sample Period. 

Note: KFLOP Maintain separate Rate Overides for Rapid motion vs normal Feed Motion.  Commands (BegRapidBuf and EndRapidBuf) inserted into the Coordinated Motion Buffer determine what type of motion is currently in progress and which Override is to be used.

A negative RFRO value will cause the Coordinated Motion Buffer to execute in reverse up until the beginning or until the point where Coordinated Motion Buffer data has been lost due to buffer wrapping (MAX_SEGMENTS is currently ~35,000 segments).  When approaching the point where previous data was lost, the RFRO will be automatically reduced to zero in order to avoid an abrupt stop.  This will not occur (and should not be necessary) when approaching the actual beginning of the buffer because normal acceleration from a stop should exist.  In this case Time will stop abruptly when the beginning of the buffer is reached. 

In order to avoid an instantaneous change in velocity the RFRO will be ramped from the current rate to the specified rate.  This command uses a default ramp rate that has been determined based on the Max Allowed Velocities, Accelerations, and Jerks of all the currently defined Coordinate Motion System Axes Channels.  In order to specify a different rate the SetRapidFROwRate command may be used.

This command will not alter the rate of execution if the FeedHold mechanism is currently in effect.  See StopImmediate.  However the specified speed will be saved so that if FeedHold is eventually released, the rate will resume to this specified speed.  To change the FRO while in FeedHold use the SetFROTemp or SetFROwRateTemp commands instead.  Those commands were intended to be used while in Feed Hold and will not alter the rate that will be resumed after Feed Hold is released.

 

Parameters

<F>

 

Desired RFRO Value.    1.0 corresponds to normal Real Time, 0.0 corresponds to fully stopped, negative values drive time in reverse.  Valid range -100...+100

 

 

Example

 

SetRapidFRO 1.2

 

 

 

 

 

SetRapidFROwRate <F> <R>

 

Description

Sets Hardware RFRO (Rapid Feed Rate Override) in KFLOP which is the rate that the Coordinated Motion Buffer is executed. A value of 1.0 = Normal Feed Rate = real time = an advance of 90us of time every 90us Servo Sample Period.  This command functions the same as the command SetRapidFRO with the exception that the rate at which the RFRO will be ramped to the new RFRO may be controlled.  The ramp rate (rate-of-change-of-rate-of-time) to be used is determined from a user supplied Time Parameter.  The Time to ramp from FRO=0. to FRO=1.0.  See SetRapidFRO for more information.

Note: KFLOP Maintain separate Rate Overrides for Rapid motion vs normal Feed Motion.  Commands (BegRapidBuf and EndRapidBuf) inserted into the Coordinated Motion Buffer determine what type of motion is currently in progress and which Override is to be used.

Parameters

<F>

 

Desired RFRO Value.    1.0 corresponds to normal Real Time, 0.0 corresponds to fully stopped, negative values drive time in reverse.  Valid range -100...+100

 

 

<R>

 

Time to ramp from RFRO=0.0 to RFRO=1.0  Valid range any positive number.

 

 

Example

 

SetRapidFROwRate 1.2 0.5

 

 

 

 

SetStartupThread<N> <M>

 

Description

 

Defines whether a user thread is to be launched on power up.

Parameters

<N>

 

Selected User Thread.  Valid range 1...7

 

 

<M>

 

Mode : 1=start on boot, 0=do not start on boot.

 

 

Example

 

SetStartupThread0 1

 

 

 

 

 

SetStateBit<N>=<M>

 

Description

 

Sets the state of an actual hardware I/O bit N or Virtual IO bit to either low (0) or high (1) .  Actual I/O bits must be defined as an output, see SetBitDirection.

Parameters

<N>

 

Bit number to set.  Valid range 0...2047

 

 

<M>

 

State.  Valid range 0...1

 

 

Example

 

 

SetStateBit0=1

 

 

 

 

SetStateBitBuf<N>=<M>

 

Description

 

Inserts into the coordinated move buffer a command to set the state of an I/O bit (actual IO bits must be defined as an output, see SetBitDirection).

 

Parameters

<N>

 

Bit number to set.  Valid range 0...2047

 

 

<M>

 

State.  Valid range 0...1

 

 

Example

 

SetBitBuf0

 

SetStateBitBuf0=1

 

 

SlaveGain<N>=<S>

or

SlaveGain<N>

 

Description

 

Sets or gets the Slave Gain for the axis.  See also MasterAxis for more information

Parameters

<N>

 

Selected Axis for command.  Valid range 0 ... 7.

 

<S>

 

Slave Gain.  Any floating point value positive or negative.

 

 

Example

 

SlaveGain0=-1.0

or

SlaveGain0

 

 

 

 

 

SoftLimitNeg<N>=<M>

or

SoftLimitPos<N>

 

Description

 

Command to set or display the Negative Software Limit of Travel.  Soft Limits will prevent motion in the same manner as a Hardware Limit with the Stop Movement Action Selected.  This occurs regardless of the Action Type Selected for the Hardware Limit Switches.  To disable Soft Limits set them to a huge range which could never occur.  Soft Limits prevent motion within KFLOP when Jogging, moving and so forth.  They also are are uploaded by Applications such as KMotionCNC and used to prevent motion during Trajectory Planning.  The Negative Soft Limit is used to prevent motion beyond a limit in the negative direction.  The Negative Soft Limit does not necessarily need to be negative.  See also SoftLimPos.

 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Maximum Negative Limit.  Valid range - any value.  Set to a large value to disable.

 

 

Example

 

SoftLimNeg0=-1000000.0

or

SoftLimNeg0

 

 

 

SoftLimitPos<N>=<M>

or

SoftLimitPos<N>

 

Description

 

Command to set or display the Positive Software Limit of Travel.  Soft Limits will prevent motion in the same manner as a Hardware Limit with the Stop Movement Action Selected.  This occurs regardless of the Action Type Selected for the Hardware Limit Switches.  To disable Soft Limits set them to a huge range which could never occur.  Soft Limits prevent motion within KFLOP when Jogging, moving and so forth.  They also are are uploaded by Applications such as KMotionCNC and used to prevent motion during Trajectory Planning.  The Positive Soft Limit is used to prevent motion beyond a limit in the positive direction. The Positive Soft Limit does not necessarily need to be positive.  See also SoftLimitNeg.

 

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

Maximum Positive Limit.  Valid range - any value.  Set to a large value to disable.

 

 

Example

 

SoftLimPos0=1000000.0

or

SoftLimPos0

 

 

 

 

 

StepperAmplitude<N>=<M>

or

StepperAmplitude<N>

 

Description

 

Set or get the nominal output magnitude used for axis if in MicroStepping Output Mode to the specified value.  This will be the output amplitude when stopped or moving slowly.  If Lead Compensation is used, the amplitude while moving may be higher.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<M>

 

PWM Stepper Amplitude.  Valid range 0...255

 

 

Example

 

StepperAmplitude0=250

 

 

 

 

StopImmediate<M>

 

Description

 

Controls the Feedhold Mechanism for the set of coordinated motion Axes.  This command can be used to feedhold (bring to an immediate stop) the set of axes, Resume from a feedhold, or clear the feedhold state.  This command can stop the set of axes regardless of whether the current motion in progress is due to coordinated motion (Interpolated Linear or Arc) or independent axes motions (Rapids).  The current state can be obtained using the GetStopState command.

Parameters

<M>

 

Mode

 

0 - Stops the axes motion (equivalent to User C Program function StopCoordinatedMotion)

1 - Resumes the axes motion (equivalent to User C Program function ResumeCoordinatedMotion)

2 - Clears the Feed hold state (equivalent to User C Program function ClearStopImmediately)

 

Example

 

StopImmediate0

 

 

 

 

 

TrigThread <S>

 

Description

 

Triggers a coordinated motion threading operation.  The coordinated motion path in the coordinated motion buffer begins execution synchronized with the Spindle motion.  The Speed specified will be used as the baseline speed such that if the actual spindle speed is equal to the base speed, then Pseudo Time will progress the same as real time.  Otherwise Pseudo time will be adjusted to match the spindle motion

 

See also: ConfigSpindle and GetSpindleRPS

Parameters

<S>

 

Base Spindle Speed in revs per second.  Range: Any floating point value.

 

 

Example

 

TrigThread 10.0

 

 

 

 

 

Vel<N>=<V>

or

Vel <N>

 

Description

 

Get or Set the max velocity for independent moves.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

<V>

 

The max velocity.  Units are in  Position units per sec

 

 

Example

 

 

Vel0=100.0

 

 

 

 

 

Version

 

Description

 

Display DSP Firmware Version and Build date in the form:. 

 

KMotion 2.22 Build 22:26:57 Feb 16 2005

 

Note it is important that when C Programs are compiled and linked, they are linked to a firmware file, DSP_KMotion.out, that matches the firmware in the KMotion where they will execute.

Parameters

None

 

 

Example

 

Version

 

WaitBitBuf<N>

 

Description

 

Inserts into the coordinated move buffer a command to wait for an IO bit to be at a high level.  Buffered IO bits are currently limited to the first 255 IO bits.  This command is useful for synchronizing motion to external events without any PC delays.

 

This command can be inserted into the Coordinated motion buffer from KMotionCNC GCode using the special comment command format of:

 

(BUF,WaitBitBuf46)

 

Parameters

<N>

 

Bit number to wait to be high.  Valid range 0...255

 

 

Example

 

WaitBitBuf46

 

 

WaitNotBitBuf<N>

 

Description

 

Inserts into the coordinated move buffer a command to wait for an IO bit to be at a low level.  This command is useful for synchronizing motion to external events without any PC delays.

 

This command can be inserted into the Coordinated motion buffer from KMotionCNC GCode using the special comment command format of:

 

(BUF,WaitNotBitBuf46)

 

Parameters

<N>

 

Bit number to wait to be low.  Valid range 0...2047

 

 

Example

 

WaitNotBitBuf46

 

 

 

Zero<N>

 

Description

 

Clear the measured position of axis.   Note for an axis that uses the Position to perform brushless motor commutation,  the commutation offset may be required to be adjusted whenever the position measurement is changed.

Parameters

<N>

 

Selected Axis for command.  Valid range 0...7.

 

 

Example

 

Zero0