
KMotion User Manual

Table of Contents - KMotion

Analog IO Screen Page 2 Summary Page 54

Bode Plot Screen Page 7 Hardware/Connector Description Page 55

C Program Screen Page 16 USB Driver Installation Page 66

Configuration and FLASH Screen Page 21 Block Diagram Page 73

Console Screen Page 31 Servo Flow Diagram Page 74

Digital IO Screen Page 34 Data Gather Example Page 75

GCode Screen Page 36 Layout Page 77

IIR Filter Screen Page 39 Driver Library Routines Page 78

Step Response Screen Page 45 HW/SW Specification Page 93

 Script Commands Page 95

 Using Multiple Boards Page 183

KMotionCNC SnapAmp

KMotionCNC Page 186 SnapAmp Hardware/Connectors Page 209

Copyright © 2005, 2006, 2006 [DynoMotion]. All rights reserved.
Revised: 03/05/07 V 2.26.

Page 1 of 219

KMotion User Manual

Analog I/O Status Screen

(Click on above image to jump to relative topic)

The Analog I/O Status Screen displays various analog measurements and commands including:

• Measured +/10 V ADC inputs
• Measured current flow per axis
• Commanded +/10 V DAC outputs
• Commanded 0-4V DAC outputs
• Commanded PWM power amp settings
• Commanded Destinations of each axis
• Measured Position of each axis
• Status and Mode of each axis

KMotion has a number of 12-bit ADC and DAC channels that may be used either as servo channel
inputs and outputs or as general purpose data acquisition and command signals.

ADC's
KMotion's ADC channels may also be read by a host computer via the Console Script Command:
ADCn, or by a on-board C program via the ADC(n) macro. These commands return ADC counts in
the range of -2048 to 2047 counts.

The first four of KMotion's eight on-board ADC channels are general purpose +/- 10V inputs. Note
that in order for these to operate properly, the on-board 5V to +/- 15V power generation must be

Page 2 of 219

KMotion User Manual

enabled. The input buffers are inverting such that nominally +10V corresponds to -2048 ADC counts, 0
V corresponds to 0 ADC counts and -10V corresponds to +2047 ADC counts. See the input circuit
here. Both the ADCs and DACs are designed to have slightly larger (nominally 2%) than +/- 10V
range to account for component tolerance errors. In this way the ranges may always be scaled and
offset to provide exact +/-10 V ranges.

Certain of KMotion's servo input modes allow ADC inputs as position information instead of digital
encoder inputs. Such as ADC Input mode and Resolver Input modes. The Resolver servo input mode
requires two ADC channels configured as sine and cosine signals. There are insufficient ADC
channels for more than two axis to be configured as Resolver input mode. When configuring an axis
for a mode utilizing an ADC input the corresponding InputChannel(s) (0 and 1) for the axis must be set
appropriately. Additionally, the corresponding Input Gains and Offsets for the axis may be used to
correct for scale and offsets in either the ADC channels or the sensor itself.

Of KMotion's eight on-board ADC channels, four of the channels are dedicated to measuring current
flow through each axis of the on-board power amplifiers. ADC Channels 4-7 normally corresponding
to axis 0-3 (if default output channel mapping is used). Since each axis consists of two full-bridge
power amplifiers, the measured current per axis is the sum of both full bridges. This provides a
convenient means to determine abnormal conditions such as stalled motors or open motor coils. This
feature is designed to make an approximate measurement of axis current, not a precise measurement of
axis current.

The range of current measurement is fixed at nominally 0 - 4.85 Amps. Since each of KMotion's full
bridge power amplifiers are rated for 3 Amps continuous (per full bridge) and are normally utilized to
drive a 4 phase motor (such as a stepper motor), a worst case current per axis occurs when both coils
are conducting 0.707 of 3 Amps or 4.24 amps. The 4.85 Amp range provides some margin beyond
this. An zero current corresponds to an ADC reading in counts of -2048 and 4.85Amps corresponds to
an reading of +2047 counts.

Small bar charts on the screen also provide an indication of current in each axis, see below. The graph
displays a green bar from 0 to 100% full which corresponds to 0 to 3A of current. Currents higher than
3A show a full red bar which may indicate an over current situation if more than 3A is flowing in any
one of the two full bridge circuits.

DAC's

Page 3 of 219

http://www.dynomotion.com/Help/Schematics/Connectors.htm#Analog_I/O_circuit

KMotion User Manual

KMotion's DAC channels may be set by a host computer via the Console Script Command: DACn=x,
or by a on-board C program via the DAC(n,x) macro. These commands set the DAC counts in the
range of -2048 to 2047 counts.

The first four of KMotion's eight on-board DAC channels are general purpose +/- 10V outputs. Note
that in order for these to operate properly, the on-board 5V to +/- 15V power generation must be
enabled. The output buffers are inverting such that nominally +10V corresponds to -2048 ADC counts,
0 V corresponds to 0 ADC counts and -10V corresponds to +2047 ADC counts (similar to the ADC
readings). See the output circuit here. Both the ADCs and DACs are designed to have slightly larger
(nominally 2%) than +/- 10V range to account for component tolerance errors. In this way the ranges
may always be scaled and offset to provide exact +/-10 V ranges.

The next four of KMotion's eight on-board DAC channels are general purpose 0 - 4V outputs. These
outputs do not require the on-board 5V to +/- 15V power generation to be enabled. 0 V corresponds to
-2048 ADC counts and +4V corresponds to +2047 ADC counts.

PWM's
The state of KMotion's eight PWM (Pulse Width Modulators) are displayed in the top right area of the
status screen. The PWM's are connected to on-board Full Bridge Drivers to allow direct control of
various motors or loads. See the description of KMotion's Power Amplifiers and PWM's for details.
The PWM's may operate independently to drive a full bridge driver, or they may function as a pair of
PWM's connected to a pair of Full Bridge drivers to drive a 3 phase load. The default and
recommended PWM assignment is to have:

 Axis 0 configured to utilize PWM 0 and 1

 Axis 1 configured to utilize PWM 2 and 3

 Axis 2 configured to utilize PWM 4 and 5

 Axis 3 configured to utilize PWM 6 and 7

However the PWMs may be reassigned by changing the OutputChan0 and OutputChan1 parameters for
an axis. Only consecutive even and odd PWMS (0/1, 2/3, 4/5, or 6/7) may be paired to drive a 3 phase
load.

Therefore, there are three possible modes for each PWM channels:

• Normal Independent
• Recirculating Independent
• 3 Phase - paired

If a PWM channel is operating in Normal mode, the PWM channel status will show the value in counts
(-255 ... +255) and the percent of full scale.

Page 4 of 219

http://www.dynomotion.com/Help/PWM_Description/PWM_Description.htm#3_Phase_mode
http://www.dynomotion.com/Help/PWM_Description/PWM_Description.htm
http://www.dynomotion.com/Help/Schematics/Connectors.htm#Analog_I/O_circuit

KMotion User Manual

If a PWM channel is operating in Recirculating mode, the PWM channel status will show the value in
counts (-511 ... +511), followed by an "R", and the percent of full scale.

If a pair of PWM channels is operating in 3 Phase mode, the PWM channel status will show the value
in counts (-230 ... 230) after the first PWM channel and the phase angle in degrees after second PWM
channel.

The example status below shows PWM channels 0 and 1 operating in 3 phase mode, PWM channels 2-
5 operating in Normal mode, and PWM channels 6 and 7 operating in Recirculating mode.

Dest

This section of status displays the currently commanded destination for each axis. The Destination is
the theoretically desired position for the axis. If a move is in progress, this is the current point along
the desired trajectory of the motion. The units are in position units for the axis.

Pos

This section of status displays the currently measured position for each axis. Depending on the input
mode for the axis, this position may represent an encoder position, a resolver position, or an absolute
position based on an ADC reading. An axis operating as an open loop microstepper mode may have
no position sensor at all. In this case the position value is meaningless and ignored.

Page 5 of 219

KMotion User Manual

Enable

Displays whether an axis is enabled or not. Clicking on the Enabled checkbox will enable the axis if
disabled or disable the axis if enabled.

Mo des

Displays the currently configured input and output modes for each axis. The input mode determines
what technique is used to determine the axis's measured position. The output mode determines how the
axis's output should be driven.

Valid input modes are:

• Encoder
• ADC
• Resolver
• User Input

Valid output modes are:

• Microstep
• DC Servo
• 3PH Servo
• 4PH Servo
• DAC Servo

Done

Displays whether an axis operating as an independent axis (not a coordinated motion axis) has
completed its last trajectory.

Page 6 of 219

KMotion User Manual

Bode Plot Screen

(Click on above image to jump to relative topic)
The Bode Plot Screen allows the measurement of a servo loop and graphs the open loop response. A
Bode Plot is by far the most common means used to measure and understand the behavior of a control
loop. KMotion contains advanced built-in features to allow rapid Bode Plot measurement and display.
The current PID and IIR Filter transfer functions may also be superimposed and graphed.

A Bode Plot is a plot of magnitude and phase of a system with respect to frequency. Any linear
system that is driven by a sinusoidal input for a long time, will output an sinusoidal signal of the same
frequency. The output signal may be shifted in phase and of a different magnitude than the input. A
Bode plot is a graph of both the change in phase and the relative change in magnitude (expressed in
decibels, db), as a function of frequency.

A Bode plot is a useful tool used to examine the stability of a servo feedback loop. If a system has an
open loop gain of -1 (magnitude of 0 db and phase of -180 degrees), then if it is placed into a negative
feedback loop, it will become unstable and oscillate. Because a system's gain and phase vary as
function of frequency, if the system has a magnitude of 0db and phase of -180 degrees at any frequency

Page 7 of 219

KMotion User Manual

it will be unstable and oscillate at that frequency. The way to avoid an unstable system is to avoid
having simultaneous conditions of 0db and -180 degrees occur at any frequency. Where the magnitude
of the system is 0db the amount that the phase is different from -180 degrees is called the phase
margin. The larger the phase margin the more stable the system. Similarly where the phase is -180
degrees the amount that the magnitude is different from 0db is called the gain margin. Again the larger
the gain margin, the more stable the system. As a general rule of thumb, for a system to be reasonably
stable it should have a phase margin of at least 30 degrees and a gain margin of at least 3 db.

The Bode Plot Screen attempts to identify and measure the 0 db crossover frequency (the first point
where the open loop magnitude becomes less than 1, often defined as the system bandwidth, 228 Hz on
the example above), the gain and phase margins, and one or two sharp peaks in the magnitude data
after the crossover. Some mechanical systems have sharp resonant peaks that may cause the system to
go unstable if these peaks approach the 0 db line and have phase near -180 degrees. A notch filter
placed at these frequencies may increase performance. The measurements are displayed under the
graph as shown below.

The most direct method for
obtaining the open loop
response, is to break the servo
loop open, inject a signal into
the system and measure the
output. However this is usually
impractical as most systems will
run out of their linear range if
driven in an open loop manner.
KMotion operates the servo loop
in its normal closed loop form,
injects a command signal,
measures the position response,
and mathematically derives the
open loop response. This does
require that the servo loop
function in some form as a stable
closed loop servo before a
measurement may be made.

Performance is not a requirement so low gains might be used to obtain an initial stable system.

Page 8 of 219

KMotion User Manual

 To perform a Bode Plot Measurement: select the channel to
measure, select the desired Amplitude and Cutoff Frequency for the
stimulus to be injected, select the # of samples to average, and
depress the Measure Pushbutton. All current Configuration
Parameters (from the Configuration Screen), Tuning Parameters
(from the Step Response Screen), and Filter Parameters (from the
IIR Filter Screen) will be downloaded, the selected Axis channel
will be enabled, and the measurement will begin.

While the measurement is in progress the number of samples
acquired will be displayed and the Measure Pushbutton will change
to a Stop Pushbutton. Pushing the Stop button will stop acquiring
data after the current sample is complete.

Depending on the type of plot requested (either Time Domain or
Frequency Domain) either the last acquired time domain measurement will be displayed or the average
all the frequency domain measurement so far acquired will be displayed.

Unfortunately Bode Plots often have regions that
are very noisy. But fortunately these are almost
always in regions that are not important to us. At
frequencies where the open loop gain is very high
(usually at low frequencies), the servo loop
performs very well, and the Position closely
matches the Command signal. In this case, the
calculation of the Error signal (see above) is
calculated by taking the difference between two
nearly equal values. A small error in Position
measurement will then result in a relatively large
error in the calculated error value. Similarly, when
the system has a very low gain (usually at high
frequencies), the position signal is very small and
often highly influenced by noise, or if an encoder is
used, by encoder resolution. The regions of
interest in order to determine system stability, are
where the open loop gain is near 0db and the

measurements are normally very accurate.

Additionally, instead of injecting sine waves at various frequencies individually, KMotion uses a
technique where a random noise signal that is rich in many frequencies is injected. Using a method
involving an FFT (Fast Fourier Transform) of the input and output, the entire frequency response may
be obtained at once.

Page 9 of 219

http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm
http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm

KMotion User Manual

Bode Plot analysis is fundamentally based on the assumption that the system being analyzed is linear.
Linear in this context means that any signal injected into a system that provides a response, might be
broken into parts, each piece injected separately, and all the resulting responses when summed would
equal the original response. If a system being measured does not meet this criteria then the result is
basically useless and meaningless. Masses, Springs, Dampers, Inductors, Resistors, Capacitors, and all
combinations thereof are examples of devices which produce very linear effects. Static friction,
Saturation, and Encoder count quantization, are examples of non-linear effects.

It is therefore very important to verify that while the system is being
measured that it is operating in its linear range. This usually entails
that the system isn't being driven too hard (or too fast), so that the
drive to the system (Output) is not reaching saturation. Additionally,
it is important to verify that the system is being driven sufficiently
hard (or slowly enough) that a measurable Position change is being
observed. The Noise Injection Amplitude and Cutoff Frequency

should be adjusted to optimize these conditions. Noise Amplitude has the same units as Position
Measurement. It should be noted that setting the Cutoff Frequency very low, may reduce the high
frequency stimulation to the system to such a point that the higher frequency measurements are invalid
or very noisy.

The Bode Plot Screen allows the measurement data to be viewed in the time domain in order to check
the signal amplitudes so that the optimal signal levels may be used in order to minimize the non-linear
effects of saturation and quantization. Select the Plot Type drop down list shown below to switch
between frequency domain and dime domain displays.

A typical time domain measurement is shown below. The blue graph shows the random stimulus to the
system. The red graph shows the system's response, which in this example is the output of an encoder.
Note that the position is quantized to integer counts and has a range of approximately 10 counts. This
is nearly the minimum number of counts to expect a reasonable Bode Plot measurement. A larger
range of encoder counts could be obtained by driving the system harder by increasing the Noise
Injection Amplitude, provided there is additional output drive available.

Page 10 of 219

KMotion User Manual

The graphs below include the output drive signal shown in green. Note that the output drive is on the
verge of saturating at the maximum allowed output value (example is from a 3 phase brushless motor,
maximum allowed PWM counts of 230). This shows that we are driving the system as hard as possible
without saturating in order to obtain the most accurate measurement.

Another means of improving the measurement accuracy (as well as servo performance in general) is
obviously to increase the encoder resolution if economically or otherwise feasible.

Page 11 of 219

KMotion User Manual

Page 12 of 219

KMotion User Manual

Compensator Response

The Bode Plot Screen is also capable of graphing a Bode Plot of the combined PID and IIR Filters.
This is often referred to as the Compensator for the system. The Cyan graph shows the magnitude of
the compensator and the violet graph shows the phase of the compensator. Notice that in this example
the maximum phase has been adjusted to match the 0 db crossover frequency of the system (~ 233 Hz)
to maximize the system phase margin.

Page 13 of 219

KMotion User Manual

Axis Control
The Axis Control buttons are present to conveniently disable (Kill), Zero, or Enable
an axis. If the axis becomes unstable (possible due to a gain setting too high), the
Kill button may be used to disable the axis, the gain might then be reduced, and then
the axis may be enabled. The Enable button downloads all parameters from all
screens before enabling the axis in the same manner as the Measure button described
above.

Note for brushless output modes that commutate the motor based on the current
position, Zeroing the position may adversely affect the commutation.

Page 14 of 219

KMotion User Manual

Save/Load Data
The Save/Load Data buttons allow the captured Bode Plot to be saved to a text file
and re-loaded at a later time. The text file format also allows the data to be
imported into some other program for display or analysis. The file format consists
of one line of header followed by one line of 9 comma separated values, one line
for each frequency. The values are:

1. Frequency in Hz
2. Input Stimulus - Real Part of complex number
3. Input Stimulus - Complex Part of complex number (always zero)
4. Measured Closed Loop Output - Real Part of complex number
5. Measured Closed Loop Output - Complex Part of complex number
6. Open loop Magnitude - in decibels
7. Open loop Phase - in degrees
8. Open loop Magnitude - in decibels - "smoothed"
9. Open loop Phase - in degrees - "smoothed"

Example of data file follows:

Freq,InputRe,InputIm,OutputRe,OutputIm,Mag,Phase,SmoothMag,SmoothPhase
0,2.329706e+007,0,2.344316e+007,0,44.10739,-180,0,0
5.425347,1.968735e+007,0,1.98995e+007,-32055.19,39.34598,-171.5001,39.34598,-171.5001
10.85069,1.816919e+007,0,1.848909e+007,-713239.6,27.48402,-116.3662,29.58283,-139.1553
16.27604,2.024904e+007,0,2.124962e+007,-1383543,21.91849,-129.5997,25.14718,-134.5283
21.70139,1.53403e+007,0,1.645491e+007,-1651059,18.38331,-129.7526,22.70204,-127.6139
27.12674,1.225619e+007,0,1.301412e+007,-1336369,18.60411,-125.4229,20.60267,-123.6751
32.55208,7014539,0,7393482,-958714.3,17.18516,-118.9553,18.9778,-119.2762
.
.
.

Update Pushbutton

The Update button may be used to update the displayed compensator graph if any
parameters (on other screens) have been modified and not downloaded or otherwise
acted upon. If Measure, Download, Step, Move, Save, Close, or Enable is used on

this or the any other screen then this command is unnecessary, however if none of these commands is
performed, then this button may be used to update the graph.

Page 15 of 219

KMotion User Manual

C Program Screen

The C Program Screen allows the user to edit C language programs, compile, link, download, and run
them within the KMotion board. C programs executing within the KMotion board have direct access to
all the Motion, I/O, and other miscellaneous functions incorporated into KMotion System.
One of the most powerful features of the KMotion system is the ability for a user to compile and
download native DSP programs and have them run in real time. Native DSP code runs faster than
interpreted code. The TMS320C67x DSP that powers the KMotion system has hardware support for
both 32 bit and 64 bit floating point math. Multiple threads (programs) may execute simultaneously
(up to 7). The integrated C compiler allows with a single pushbutton to save, compile, link,

download, and execute all within a fraction of a second. After programs have been developed and

Page 16 of 219

KMotion User Manual

tested they may be flashed into memory and run stand alone with no host connection.

Other features of the C Program Screen include a rich text editor with syntax highlighting, keyword
drop down lists, function tips, unlimited undo/redo, and Find/Replace with regular expressions.

See list below for available constants and functions.

For a more details on the functions, see the KMotionDef.h header file. This file is normally included
into a user program so that all accessible base functions and data structures are defined.

See PC-DSP.h for common definitions between the PC host and KMotion DSP.

Constants:
FALSE 0
TRUE 1

PI 3.14159265358979323846264
PI_F 3.1415926535f
TWO_PI (2.0 * PI)
TWO_PI_F (2.0f * PI_F)
PI_2F (PI_F * 0.5f)

TRAJECTORY_OFF 0
TRAJECTORY_INDEPENDENT 1
TRAJECTORY_LINEAR 2
TRAJECTORY_CIRCULAR 3
TRAJECTORY_SPECIAL 4

Axis Input Modes
ENCODER_MODE 1

ADC_MODE 2

RESOLVER 3

USER_INPUT_MODE 4

Axis Output Modes
MICROSTEP_MODE 1

DC_SERVO_MODE 2

Page 17 of 219

file:///C:/KMB864~1/DSP_KMotion/PC-DSP.h
file:///C:/KMB864~1/DSP_KMotion/KMotionDef.h
http://www.dynomotion.com/Help/PROGRA~1/ShowContextMenu.htm
http://www.dynomotion.com/Help/PROGRA~1/ShowContextMenu.htm
http://www.dynomotion.com/Help/PROGRA~1/ShowTips.htm
http://www.dynomotion.com/Help/PROGRA~1/ShowDropDown.htm
http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#FLASH

KMotion User Manual

BRUSHLESS_3PH_MODE 3
BRUSHLESS_4PH_MODE 4
DAC_SERVO_MODE 4

Data Gather/Plot Functions:
void SetupGatherAllOnAxis(int c, int n_Samples);
void TriggerGather();
int CheckDoneGather();

Analog I/O Functions:
ADC(ch);

DAC(ch, value);

Power Amp Functions:
void WritePWMR(int ch, int v);
void WritePWM(int ch, int v);

void Write3PH(int ch, float v, double angle_in_cycles);
void Write4PH(int ch, float v, double angle_in_cycles);

Timer Functions:

double Time_sec();
void WaitUntil(double time_sec);
void Delay_sec(double sec);
double WaitNextTimeSlice(void);

Page 18 of 219

KMotion User Manual

Axis Move Functions:
void DisableAxis(int ch);
void EnableAxisDest(int ch, double Dest);
void EnableAxis(int ch);
void Zero(int ch);
void Move(int ch, double x);
void MoveRel(int ch, double dx);
int CheckDone(int ch);
void MoveXYZ(double x, double y, double z);
int CheckDoneXYZ();
void DefineCoordSystem(int axisx, int axisy, int axisz, int axis a);
void StopMotion(CHAN *ch);

Digitial I/O Functions:
void SetBitDirection(int bit, int dir);
int GetBitDirection(int bit);
void SetBit(int bit);
void ClearBit(int bit);
void SetStateBit(int bit, int state);
int ReadBit(int bit);

Print to Console Window Functions:
int Print(char *s);
int PrintFloat(char *Format, float v);
int PrintInt(char *Format, int v);

Thread Functions:
void StartThread(int thread);
void PauseThread(int thread);
void ThreadDone();
int ResumeThread(int thread);

Math Functions:

double sqrt(double x);
double exp(double x);
double log(double x);
double log10(double x);
double pow(double x, double y);
double sin(double x);
double cos(double x);
double tan(double x);
double asin(double x);
double acos(double x);

Page 19 of 219

KMotion User Manual

double atan(double x);
double atan2(double y, double x);

float sqrtf (float x);
float expf (float x);
float logf (float x);
float log10f(float x);
float powf (float x, float y);
float sinf (float x);
float cosf (float x);
float tanf (float x);
float asinf (float x);
float acosf (float x);
float atanf (float x);
float atan2f(float y, float x);

Page 20 of 219

KMotion User Manual

Configuration and FLASH Screen

(Click on above image to jump to relative topic)
The Configuration and FLASH Screen displays and allows changes to KMotion's configuration and
allows the configuration, new firmware, or user programs to be FLASH'ed to non volatile memory.

Each axis channel is configured independently. To view or make changes to
a configuration first select the desired axis channel using the channel drop
down. Note that changing an axis on any screen switches the active channel

on all other screens simultaneously.

The parameters for each axis's configuration are grouped into three classes: Definitions, Tuning, and
Filters. Each class of parameters are displayed on three corresponding screens:

• Configuration Screen
• Step Response Screen
• IIR Filter Screen

Page 21 of 219

KMotion User Manual

The Configuration Screen contains definition parameters that should be set once and remain set unless
a physical change to the hardware is made. For example, a Stepper motor might be replaced with a
Brushless Motor and Encoder.

The Step Response Screen contains parameters that are tuning related and are located where the tuning
response is most often adjusted and checked. For example, PID (proportional, integral, derivative)
parameters are located there.

The IIR Filter Screen contains parameters related to servo filters.

Utilities

The buttons along the bottom of the Configuration Screen allow a set of axis parameters to be:

• Saved or Loaded from a disk file (*.mot)
• Uploaded or Downloaded to a KMotion
• Converted to equivalent C Code for use in a KMotion C Program

Note that these buttons operate on all parameters (for one axis) from all screens as a unit.

Axis Modes

Use the respective dropdown to set either the axis input or output mode. The input mode defines the
type of position measurement (if required) for the axis. Closed loop control always requires some type
of position measurement.. For open loop stepper motor control, position measurement is optional. The
output mode determines how the output command should be achieved. Either by driving the on board
PWMs and Full Bridge Drivers to control a specific type of motor, or by driving a DAC signal that will
drive an external power amplifier.

Page 22 of 219

http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm

KMotion User Manual

Input Channels
The Input Channels section specifies which channels for the
selected input device will be used. This may be the channel
of an Encoder input or an ADC input depending on the
selected input mode. Resolvers requires two ADC input
channels (for sine and cosine), for all other modes the second
channel number is not used.

The gain and offset parameters are applied to the respective
input device. The gain is applied before the offset, i.e. x' = ax+b, where a is the gain and b is the
offset..
Incremental encoders only utilize the gain parameter which may be used to scale or reverse (using a
negative gain) the measurement.

A Resolver is a device that generates analog sine and cosine signals as it's shaft angle changes. Either
one or multiple sine and cosine waves may be produced per revolution of a resolver. An encoder that
generates analog sine and cosine signals may also be connected to a KMotion as though it was a
resolver. Resolver inputs may utilize both gains and offsets and be adjusted such that the sine and
cosine ADC measurements are symmetrical about zero and have the same amplitude. Gain and offset
errors may be introduced by either the ADC input circuitry and/or the Resolver itself. If one were to
plot the sine vs. cosine signals as a resolver's position changes, the result should be circle. KMotion
computes the arctangent of the point on the circle (also keeping track of the number of rotations) to
obtain the current position. An offset or elliptical "circle" will result in a distorted position
measurement throughout the cycle. Therefore note that adjusting the gains and offsets will result in
changing the linearity of the position measurement, not the scale of the position measurement itself.
The scale of a resolver input will always be 2π radians per cycle.

An ADC input uses a single absolute ADC channel input to obtain the position measurement. Gain0
and Offset0 may be used to modify the ADC counts from -2048 .. +2047 to and desired range.

Output Channels
The Output Channels section specifies which channels for the selected output
device will be used. This may be the channel of a PWM connected to an on-board
power amplifier, or a DAC that is used to drive an external power amplifier.

Stepper mode and 4 phase brushless mode require two channels of PWM to be
specified.

DC Servo motor (Brush motor type) only require one PWM channel.

3 Phase brushless motors require a consecutive pair of PWM channels. In 3 Phase output mode, only
the Output Channel 0 value is used and must be set to an even PWM number.

Page 23 of 219

http://www.dynomotion.com/Help/PWM_Description/PWM_Description.htm

KMotion User Manual

Microstepper Amplitude, Max Following Error, Inv Dist Per Cycle, Lead Compensation
Microstepper Amplitude is only applicable to configurations with
output mode of Microstepper. This parameter sets the amplitude (of
the sine wave) in PWM counts (0 .. 255) that will be output to the sine
and cosine PWM channels while moving slowly or at rest. Note that
at higher speeds KMotion has the ability to increase the amplitude to
compensate for motor inductance effects and may actually be higher.
See Lead Compensation in this same section.

Max Following Error is applicable to all closed loop servo output
modes (DC Servo, 3 Phase Brushless, 4 Phase brushless, and DAC
Servo). Whenever the commanded destination and the measured

position differ by greater than this value, the axis will be disabled (if this axis is a member of the
defined coordinate system, then any coordinated motion will also stop). To disable following errors set
this parameter to a large value.

Inv Dist Per Cycle applies to Stepper, 3 Phase, and 4 Phase motors. For a stepper motor, the distance
per cycle defines the distance that the commanded destination should change by for a motor coil to be
driven through a complete sinusoidal cycle. Parameter should be entered as the inverse (reciprocal) of
the distance per cycle. Stepper motors are most often characterized by shaft angle change per "Full
Step". A motor coil is driven through a complete cycle every four - "Full Steps". See the following
examples:

Example #1 : A mechanism moves 0.001" for each full step of a step motor It is desired for
commanded distance to be in inches.

Result: One Cycle = 4 full steps = 0.004", Thus InvDistPerCycle = 1.0/0.004 = 250.0 (cycles/inch).
Commanding a move of 1.00 will generate 250 sine waves, or the equivalent of 1000 full steps, or one
inch of movement..

Example #2 : InvDistPerCycle is left at the default value of 1.0

Result: Move units are in cycles. Commanding a move of 50 will generate 50 sine waves, or the
equivalent of 200 full steps, or one revolution of a 200 Step or 1.8 degree motor.

For 3 Phase or 4 Phase motors, Inv Dist Per Cycle represents the inverse of the distance for one
complete commutation cycle. See the example below.

Example #1 : A 3 phase motor/encoder has a 4096 count per revolution encoder which is used for
position feedback and for motor commutation. InputGain0 is set to 1.0 so position measurement
remains as encoder counts. The motor design is such that the commutation goes through 3 complete
cycles each motor revolution.

Result: One Cycle = 4096 counts/3.0 Thus InvDistPerCycle = 3.0/4096 = 0.000732421875.

Page 24 of 219

KMotion User Manual

Note that it is important to use a high degree of precision to avoid commutation errors after moving to
very large positions (or at constant velocity for a long period of time). KMotion maintains Inv Dist Per
Cycle (as well as position) as a double precision (64 bit) floating point number for this reason (more
than 70 years at 1 MHz would be required to have 1 count of error)

Lead Compensation may be used to compensate for motor inductance. When a voltage is applied to a
coil at a low frequencies, the current flow is dictated by the coil's resistance and is constant. As the

frequency increases at some point, where , the inductance, L, begins to dominate and the

current drops (see plot below). KMotion's Lead Compensator has the opposite effect, it has a constant
gain of 1 and at some point increases with frequency. The Lead Compensation parameter sets
(indirectly) the frequency where this occurs. If the frequency is set to match the frequency of the
motor, the effects will cancel, and the motor current (and torque) will remain constant to a much higher
frequency.

This assumes that the nominal drive voltage is lower than the available supply voltage. For example, a
5V stepper motor might be driven with a 15V supply to allow head room for the applied voltage to be
increased at high frequencies (speeds).

The simple formula that implements the
Lead Compensation is:

v ' = v + Δv L
where v is the voltage before the
compensation, v' is the voltage after the
compensation, Δv is the change in output
voltage from the last servo sample, and L
is the Lead Compensation value.

The following formula will compute the
"knee" frequency for a particular lead and
servo sample rate (normally T=90 us).

or the inverse of this formula will provide
the lead value to position the knee at a
particular frequency.

Page 25 of 219

KMotion User Manual

The Following table generated from the above formula may also be used. For most motors the Lead
Compensation values will be within the range of 5 - 20.

Freq, Hz Lead

50 35.37

60 29.47

70 25.26

80 22.11

90 19.65

100 17.69

120 14.74

140 12.63

160 11.06

180 9.83

200 8.85

220 8.04

240 7.37

260 6.81

280 6.32

300 5.90

350 5.06

400 4.43

450 3.94

500 3.55

550 3.23

600 2.96

650 2.74

700 2.54

750 2.38

800 2.23

850 2.10

900 1.99

950 1.88

1000 1.79

Page 26 of 219

KMotion User Manual

This plot above displays a simple 0.5 second motion with no Lead Compensation for a Microstepper
Motor. Position axis shown on the primary (left axis) for the red plot has units of cycles. PWM output
shown on the secondary (right axis) for the green plot has units of PWM counts. Move parameters are:
Vel=200 cycles/sec, Accel=200 cycles/sec2, Jerk=10000 cycles/sec3. Note that regardless of velocity
PWM amplitude is constant

Page 27 of 219

KMotion User Manual

This plot displays the same 0.5 second motion with Lead Compensation = 27.0. All other parameters
same as above. Note how PWM amplitude increases with velocity

If motor parameters are unknown, a trial and error approach may be used to find the best lead
compensation value. The following procedure may be used:

1. Set Lead Compensation to zero
2. Increase motor speed until a drop in torque is first detected
3. Increase Lead Compensation until normal torque is restored

Setting the Lead Compensation too high should be avoided, as it may cause over current in the motor at
medium speeds or voltage distortion due to saturation (clipping).

Limit Switch Options
KMotion has the ability to monitor limit switch
inputs for each axis and stop motion when a
physical limit switch is detected. The limit switch
options allow this feature to be enabled or disabled
for each limit (positive or negative), what specific
bit to be monitored for each limit, what polarity of
the bit indicates contact with the limit, and what
action to perform when a limit is detected.

Select Watch Limit to enable limit switch
monitoring.

Select Stop when low to select negative true logic
for the limit (motion will be stopped when a low

level is detected).

Specify a bit no. for which bit is to be monitored for the limit condition. See the Digital IO Screen for
current I/O bit status and a recommended bit assignment for limit switches (bits 12 through 19). If in a
particular application it isn't critical to determine which Limit Switch (either positive or negative, or
even which axis) the number of digital I/O bits consumed by limit switches may be reduced by "wire
ORing" (connecting in parallel) multiple switches together. In this case, the same bit number may be
specified more than one place.

The Action drop down specifies what action should be performed when a limit is encountered.

Kill Motor Drive - will completely disable the axis whenever the limit condition is present. Note that it
will not be possible to re-enable the axis (and move out of the limit) while the limit condition is still
present and this mode remains to be selected.

Disallow drive into limit - will disable the axis whenever the limit condition is present and a motion is
made into the direction of the limit. This mode will allow the axis to be re-enabled while inside the

Page 28 of 219

http://www.dynomotion.com/Help/DigitalIOScreen/DigitalIOScreen.htm

KMotion User Manual

limit and will allow a move away from the limit.

Stop Movement - this action will keep the axis enabled, but will freeze the commanded position as
soon as the limit is detected, and stop any motion trajectory in progress for the axis.

Furthermore, in all the above cases and a limit condition is detected, if the axis belongs to the set of
axis in the coordinated group, then any coordinated motion trajectory will be halted.

Launch on Power Up
The launch on power up configuration specifies which User Programs are to be
automatically launched on power up for stand alone operation of KMotion. See
the C Program Screen for information on how to Edit, Compile, and Download a
C program into KMotion for execution into one (or more) of the 7 Thread
program spaces within KMotion.

To configure a program execute on power up, perform the following steps:

1. Compile and Download a C Program to a particular Thread Space.

2. Select Launch on Power Up for the same Thread.

3. Flash the User Memory (see following section).

4. Disconnect the Host USB cable

5. Cycle Power on the KMotion

FLASH
The entire user memory space may be Flashed into nonvolatile memory by
depressing the Flash - User Memory button. This saves all of the axis
configurations, all user program thread spaces, and the user persistent data
section. On all subsequent power up resets, KMotion will revert to that saved
configuration. (note that it is preferred to have the host, or a user program,
configure the board before each use rather than relying on the exact state of a
KMotion set to a particular state at some point in the past).

To upgrade the system firmware in a KMotion use the Flash - New Version
button. The user will be prompted to select a DSPKMotion.out COFF file from

within the KMotion Install Directory to download and Flash. Note that all user programs and data will
be deleted from KMotion when loading a new version.

After the firmware has been flashed it is necessary to re-boot the KMotion in order for the new

Page 29 of 219

http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm

KMotion User Manual

firmware to become active.

It is important that the <Install Directory>\DSP_KMotion\DSPKMotion.out file match the firmware
that is flashed into KMotion. User C programs are Linked using this file to make calls and to access
data located within the KMotion firmware. Whenever a user program is compiled and linked using this
file, the timestamp of this file is compared against the timestamp of the executing firmware (if a
KMotion is currently connected). If the timestamps differ, the following message will be displayed,
and it is not recommended to continue. The "Version" Console Script Command may also be used to
check the firmware version.

In all cases while flashing firmware or user programs the process should not be interrupted or a
corrupted flash image may result which renders the board un-bootable. However if this occurs the
Flash Recovery mode may be used to recover from the situation. To perform the recovery, press the
Flash Recovery button and follow the dialog prompts to:

1. Select the firmware file to boot
2. Turn off KMotion
3. Turn on KMotion
4. After KMotion boots, Flash the New Version

Page 30 of 219

KMotion User Manual

 Console Screen
Commands (alphabetical):

3PH<N>=<M> <A>

4PH<N>=<M> <A>

Accel <N>=<A>

ADC<N>

Arc <XC> <YC> <RX> <RY>

 <θ0> <dθ> <Z0> <Z1>

 <a> <c> <d> <tF>

ArcHex <XC> <YC> <RX> <RY>

 <θ0> <dθ> <Z0> <Z1>

 <a> <c> <d> <tF>

CheckDone<N>

CheckDoneBuf

CheckDoneGather

CheckDoneXYZA

ClearBit<N>

ClearBitBuf<N>

ClearFlashImage

CommutationOffset<N>=<X>

D<N>=<M>

DAC<N> <M>

DeadBandGain<N>=<M>

DeadBandRange<N>=<M>

DefineCS<X> <Y> <Z> <A>

Dest<N>=<M>

DisableAxis<N>

Echo <S>

EnableAxis<N>

EnableAxisDest<N> <M>

Enabled<N>

EntryPoint<N> <H>

ExecBuf

ExecTime

Execute<N>

FFAccel<N>=<M>

FFVel<N>=<M>

Flash

GatherMove<N> <M> <L>

GatherStep<N> <M> <L>

GetBitDirection<N>

GetGather <N>

GetGatherDec<N>

GetGatherHex<N> <M>

GetInject<N> <M>

GetPersistDec<N>

GetPersistHex<N>

GetStatus

The Console Screen displays messages from the DSP and the PC. The
Console window retains the last 1000 lines of text. After more than 1000 lines
are displayed the earliest messages scroll off into a permanent text file
(LogFile.txt) in the KMotion\Data subdirectory.

To Send a command to the DSP enter the text string in the bottom command
cell and press the Send button.

Selecting the Check box changes from a single command line to
multiple command lines, see below. This allows several commands to be
entered and then easily sent with a single push button.

Page 31 of 219

http://www.dynomotion.com/Help/Cmd.htm#GetStatus
http://www.dynomotion.com/Help/Cmd.htm#GetPersistHex
http://www.dynomotion.com/Help/Cmd.htm#GetPersistDec
http://www.dynomotion.com/Help/Cmd.htm#GetInject
http://www.dynomotion.com/Help/Cmd.htm#GetGatherHex
http://www.dynomotion.com/Help/Cmd.htm#GetGatherDec
http://www.dynomotion.com/Help/Cmd.htm#GetGather
http://www.dynomotion.com/Help/Cmd.htm#GetBitDirection
http://www.dynomotion.com/Help/Cmd.htm#GatherStep
http://www.dynomotion.com/Help/Cmd.htm#GatherMove
http://www.dynomotion.com/Help/Cmd.htm#Flash
http://www.dynomotion.com/Help/Cmd.htm#FFVel
http://www.dynomotion.com/Help/Cmd.htm#FFAccel
http://www.dynomotion.com/Help/Cmd.htm#Execute
http://www.dynomotion.com/Help/Cmd.htm#ExecTime
http://www.dynomotion.com/Help/Cmd.htm#ExecBuf
http://www.dynomotion.com/Help/Cmd.htm#EntryPoint
http://www.dynomotion.com/Help/Cmd.htm#Enabled
http://www.dynomotion.com/Help/Cmd.htm#EnableAxisDest
http://www.dynomotion.com/Help/Cmd.htm#EnableAxis
http://www.dynomotion.com/Help/Cmd.htm#Echo
http://www.dynomotion.com/Help/Cmd.htm#DisableAxis
http://www.dynomotion.com/Help/Cmd.htm#Dest
http://www.dynomotion.com/Help/Cmd.htm#DefineCS
http://www.dynomotion.com/Help/Cmd.htm#DeadBandRange
http://www.dynomotion.com/Help/Cmd.htm#DeadBandGain
http://www.dynomotion.com/Help/Cmd.htm#DAC
http://www.dynomotion.com/Help/Cmd.htm#D
http://www.dynomotion.com/Help/Cmd.htm#CommutationOffset
http://www.dynomotion.com/Help/Cmd.htm#ClearFlashImage
http://www.dynomotion.com/Help/Cmd.htm#ClearBitBuf
http://www.dynomotion.com/Help/Cmd.htm#ClearBit
http://www.dynomotion.com/Help/Cmd.htm#CheckDoneXYZA
http://www.dynomotion.com/Help/Cmd.htm#CheckDoneGather
http://www.dynomotion.com/Help/Cmd.htm#CheckDone
http://www.dynomotion.com/Help/Cmd.htm#CheckDone
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ADC
http://www.dynomotion.com/Help/Cmd.htm#Accel
http://www.dynomotion.com/Help/Cmd.htm#4PH
http://www.dynomotion.com/Help/Cmd.htm#3PH

KMotion User Manual

I<N>=<M>

IIR<N> <M>=<A1> <A2> <B0> <B1>

<B2>

Inject<N> <F> <A>

InputChan<M> <N>=<C>

InputGain<M> <N>=<G>

InputMode<N>=<M>

InputOffset<M> <N>=<O>

InvDistPerCycle<N>=<X>

Jerk<N>=<J>

Jog<N>=<V>

Kill<N>

Lead<N>=<M>

LimitSwitch<N>=<H>

Linear <X0> <Y0> <Z0> <A0>

 <X1> <Y1> <Z1> <A1>

 <a> <c> <d> <tF>

LinearHex <X0> <Y0> <Z0> <A0>

 <X1> <Y1> <Z1> <A1>

 <a> <c> <d> <tF>

LoadData <H> <N>

LoadFlash<H> <N>

MaxErr<N>=<M>

MaxFollowingError<N>=<M>

MaxI<N> <M>

MaxOutput<N>=<M>

Move<N>=<M>

MoveAtVel<N>=<M> <V>

MoveRel<N>=<M>

MoveRelAtVel<N>=<M> <V>

MoveXYZA <X> <Y> <Z> <A>

OpenBuf

OutputChan<M> <N>=<C>

OutputMode<N>=<M>

P<N>=<M>

Pos<N>=<P>

ProgFlashImage

PWM<N>=<M>

PWMR<N>=<M>

ReadBit<N>

Reboot!

SetBit<N>

SetBitBuf<N>

SetBitDirection<N>=<M>

SetGatherDec <N> <M>

SetGatherHex<N> <M>

SetPersistDec <O> <D>

SetPersistHex <O> <H>

SetStartupThread<N> <M>

SetStateBit<N>=<M>

SetStateBitBuf<N>=<M>

See the alphabetical list for available commands.

Or see commands grouped by category here.

Page 32 of 219

http://www.dynomotion.com/Help/CmdsCategory.htm
http://www.dynomotion.com/Help/Cmd.htm#SetStateBitN=B
http://www.dynomotion.com/Help/Cmd.htm#SetStateBit
http://www.dynomotion.com/Help/Cmd.htm#SetStartupThread
http://www.dynomotion.com/Help/Cmd.htm#SetPersistHex
http://www.dynomotion.com/Help/Cmd.htm#SetPersistDec
http://www.dynomotion.com/Help/Cmd.htm#SetGatherHex
http://www.dynomotion.com/Help/Cmd.htm#SetGatherDec
http://www.dynomotion.com/Help/Cmd.htm#SetBitDirection
http://www.dynomotion.com/Help/Cmd.htm#SetBitBuf
http://www.dynomotion.com/Help/Cmd.htm#SetBit
http://www.dynomotion.com/Help/Cmd.htm#Reboot!
http://www.dynomotion.com/Help/Cmd.htm#ReadBit
http://www.dynomotion.com/Help/Cmd.htm#PWMR
http://www.dynomotion.com/Help/Cmd.htm#PWM
http://www.dynomotion.com/Help/Cmd.htm#ProgFlashImage
http://www.dynomotion.com/Help/Cmd.htm#Pos
http://www.dynomotion.com/Help/Cmd.htm#P
http://www.dynomotion.com/Help/Cmd.htm#OutputMode
http://www.dynomotion.com/Help/Cmd.htm#OutputChan0
http://www.dynomotion.com/Help/Cmd.htm#OpenBuf
http://www.dynomotion.com/Help/Cmd.htm#MoveXYZA
http://www.dynomotion.com/Help/Cmd.htm#MoveRelAtVel
http://www.dynomotion.com/Help/Cmd.htm#MoveRel
http://www.dynomotion.com/Help/Cmd.htm#MoveAtVel
http://www.dynomotion.com/Help/Cmd.htm#Move
http://www.dynomotion.com/Help/Cmd.htm#MaxOutput
http://www.dynomotion.com/Help/Cmd.htm#MaxI
http://www.dynomotion.com/Help/Cmd.htm#MaxFollowingError
http://www.dynomotion.com/Help/Cmd.htm#MaxErr
http://www.dynomotion.com/Help/Cmd.htm#LoadFlash
http://www.dynomotion.com/Help/Cmd.htm#LoadData
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#LimitSwitch
http://www.dynomotion.com/Help/Cmd.htm#Lead
http://www.dynomotion.com/Help/Cmd.htm#Kill
http://www.dynomotion.com/Help/Cmd.htm#Jog
http://www.dynomotion.com/Help/Cmd.htm#Jerk
http://www.dynomotion.com/Help/Cmd.htm#InvDistPerCycle
http://www.dynomotion.com/Help/Cmd.htm#InputOffset0
http://www.dynomotion.com/Help/Cmd.htm#InputMode
http://www.dynomotion.com/Help/Cmd.htm#InputGain0
http://www.dynomotion.com/Help/Cmd.htm#InputChan0
http://www.dynomotion.com/Help/Cmd.htm#Inject
http://www.dynomotion.com/Help/Cmd.htm#IIR
http://www.dynomotion.com/Help/Cmd.htm#IIR
http://www.dynomotion.com/Help/Cmd.htm#I

KMotion User Manual

StepperAmplitude<N>=<M>

Vel<N>=<V>

Version

Zero<N>

Page 33 of 219

http://www.dynomotion.com/Help/Cmd.htm#Zero
http://www.dynomotion.com/Help/Cmd.htm#Version
http://www.dynomotion.com/Help/Cmd.htm#Vel
http://www.dynomotion.com/Help/Cmd.htm#StepperAmplitude

KMotion User Manual

Digital I/O Screen

The Digital I/O Screen displays and allows changes to the current state of the KMotion digital I/O
bits.

KMotion has a number of digital I/O bits that may be used as GPIO (General Purpose Inputs or
Outputs) or as specific dedicated functions (encoder inputs). There are 28 bits that may be utilized as
GPIO (bits 0 - 27). Each bit may be independently defined as either an input or an output. On Power
UP KMotion defines all I/O as inputs by default. Any bit may be configured as an output by checking
the corresponding box in the "Output" columns. Alternately, the bits may be configured by a C
program running within the KMotion (See SetBitDirection()) or by Script commands (See
SetBitDirection) sent to the KMotion.

The State of each I/O bit may be observed in the corresponding checkbox under the "State" columns.
If the bit is defined as an output, clicking on the "State" checkbox will toggle the bit. Alternately, the
bits may be read, set, or cleared by a C program running within the KMotion (See ReadBit(), SetBit(),
ClearBit(), or SetStateBit()) or by Script commands (See ReadBit, SetBit, ClearBit, or SetStateBit) sent
to the KMotion.

Additionally, buffered commands may change the state of Digital I/O bits. Buffered I/O commands are
I/O commands that are inserted into the coordinated motion buffer. When it is required that I/O bits be
changed at exact times within a motion sequence, buffered I/O commands may be inserted into the
motion buffer (see SetBitBuf, ClearBitBuf, and SetStateBitBuf). In this case the I/O commands occur

Page 34 of 219

http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#SETSTATEBITBUF
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#CLEARBITBUF
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#SETBITBUF
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#SETSTATEBIT
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#CLEARBIT
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#SETBIT
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#READBIT
http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm#SetStateBit
http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm#ClearBit
http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm#SetBit
http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm#ReadBit
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#SETBITDIRECTION
http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm#SetBitDirection

KMotion User Manual

when they are encountered within the motion sequence. The KMotion GCode interpreter allows
buffered I/O commands to be inserted within motion sequences by using a special form of GCode
comment (See buffered GCode Commands). The Digital I/O 0 - 21 are routed to connector JP3, and
Digital I/O 20 - 27 are routed to connector JP4 all as LVTTL signals (which are also 5V TTL
compliant and tolerant). Note that Digital I/O 20 and 21 are routed to both connectors.

Digital I/O bits 0 - 7 are wired internally to the 4 quadrature encoder inputs (2 bits - Phase A and Phase
B for each encoder). For each encoder that is intended to be used, the corresponding Digital I/O bits
must be defined as inputs.

Digital I/O bit 28 is dedicated as the +/-15V enable. Setting this bit activates the KMotion on-board +/-
15V generator. The +/- 15V is derived from the 5V supply and is able to source ~ 2 Watts of power on
each supply (~ 130ma). This supply is required to be enable when using the +/- 10V ADC inputs or +/-
10V DAC outputs.

Caution: Shorting + or - 15V to any Digital I/O bit will cause permanent damage.
Digital I/O bit 29 is dedicated as the Fan Control bit. Applications that supply high currents (> ~
2Amps) for extended periods (> ~10 seconds) on any axis should enable the fan to cool the output
stages and avoid thermal shutdown of the output stages.

Digital I/O bit 30 is dedicated as the Aux Control Switch. The Aux Control Switch may be used to
switch some medium power (< 30V @ 2A) device like a lamp or solenoid (See example).

Digital I/O bit 31 is a dedicated input of Thermal Warning Status. Any output stage that is overheating
(internal junction temperature > 145 degrees C) will trigger the thermal warning and cause shutdown of
all output stages.

Page 35 of 219

http://www.dynomotion.com/Help/Schematics/Connectors.htm#Auxillary Switch Example
http://www.dynomotion.com/Help/Schematics/Connectors.htm#JP4
http://www.dynomotion.com/Help/Schematics/Connectors.htm#JP3
http://www.dynomotion.com/Help/GCodeScreen/GCodeScreen.htm#BUF

KMotion User Manual

G Code Quick
Reference G Code Screen
G Codes
G0 X3.5 Y5.0 Z1.0 A2.0
(Rapid move)

G1 X3.5 Y5.0 Z1.0
A2.0(linear move)

G2 X0.0 Y0.5 I0 J0.25
(CW Arc move)

G3 X0.0 Y0.5 I0 J0.25
(CCW Arc move)

G4 P0.25

(Dwell seconds)

G10L2Pn
G10L2P1X0Y0Z0

(Set Fixture Offset #n)

G20 Inch units

G21 mm units

G28 Move to Reference
Position #1

G30 Move to Reference
Position #2

G40 Tool Comp Off

G41 Tool Comp On

Left of Contour)

G42 Tool Comp On (Right
of Contour)

G43 Hn (Tool #n length
comp On)

G49 (Tool length comp off)

Show screen feature descriptions

Page 36 of 219

http://www.dynomotion.com/Help/GCODES~1/GCodeScreenBreakout.htm

KMotion User Manual

G53 Absolute Coord

G54 Fixture Offset 1

G55 Fixture Offset 2

G56 Fixture Offset 3

G57 Fixture Offset 4

G58 Fixture Offset 5

G59 Fixture Offset 6

G59.1 Fixture Offset 7

G59.2 Fixture Offset 8

G59.3 Fixture Offset 9

G90 Absolute Coordinates

G91 Relative Coordinates

G92 Set Global Offset
Coordinates G92 X0Y0 Z0

M Codes:
M0 (Program Stop)

M2 (Program End)

M3 Spindle CW

M4 Spindle CCW

M5 Spindle Stop

M6 Tool Change

M7 Mist On

M8 Flood On

M9 Mist/Flood Off

Other Codes:
F (Set Feed rate in/min or
mm/min)

S (Spindle Speed)

D (Tool)

See Also G Code Viewer Screen and Tool Setup Screen

The G Code Screen allows the user to edit G Code Programs and execute
them.

GCode is a historical language for defining Linear/Circular/Helical
Interpolated Motions often used to program numerically controlled machines
(CNC Machines).

See the Quick Reference to the left for commonly used G Code commands.

KMotion's G Code interpreter was derived from the Open Source EMC G
Code Interpreter. Click here for the EMC User Manual (Only the G Code
portions of the manual, Chapters 10-14 pertain to KMotion G Code)

Specially coded comments embedded within a GCode program may be used to
issue KMotion Console Script commands directly to KMotion.

A comment in the form: (CMD,xxxxxx) will issue the command xxxxxx
immediately to KMotion as soon as it is encountered by the Interpreter. Any
KMotion command that does not generate a response may be used in this
manner.

A comment in the form: (BUF,xxxxxx) will place the command xxxxxx into
KMotion's coordinated motion buffer. Coordinated motion sequences are
download to a motion buffer within KMotion before they are executed. This
guarantees smooth uninterrupted motion. The BUF command form allows a
command to be inserted within the buffer so they are executed at an exact time
within the motion sequence. Only the following KMotion Script commands
may be used in this manner.

SetBitBuf, ClearBitBuf, SetStateBitBuf.

Additionally, a comment in the form: (MSG,xxxxxx) will pause GCode
Execution and display a pop-up message window displaying the message
xxxxxxx.

Page 37 of 219

http://www.dynomotion.com/Help/GCODES~1/EMC_Handbook/node45.html
http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreen.htm
http://www.dynomotion.com/Help/KMotionCNC/GCodeViewerScreen.htm

KMotion User Manual

Comments:
(Simple Comment)

(MSG,OK toContinue?)
(CMD,EnableAxis0)
(BUF,SetBitBuf29)

Page 38 of 219

KMotion User Manual

IIR Filter Screen

The IIR Filter Screen allows setting various IIR (Infinite Impulse Response) Filters into the control
loop. KMotion allows up to three - 2nd order bi-quadratic stages per axis to be connected in cascade.
See the KMotion Servo Flow Diagram for the placement of the IIR Filters.

KMotion implements the filters using Z-domain coefficients shown on the bottom half of the screen.
Because of the common confusion of the names and signs of the coefficients, the transfer function form
is shown for reference.

Note that setting B0=1.0 and all other coefficients, B1, B2, A1, and A2, to zero causes a transfer
function of unity, effectively bypassing the filter. A Clear pushbutton is available to conveniently set
this mode.

Page 39 of 219

http://www.dynomotion.com/Help/ServoFlowDiagram.htm

KMotion User Manual

The top portion of each filter section allows various common filters to be specified in the s-domain.
Supported filter types are: 1st order Low Pass, 2nd Order Low Pass, Notch, and two real poles and
zeros and are selected using a drop-down list box.. Z-domain is a place holder used as a reminder that
the z-domain coefficients were determined directly by some other means. The form of each of the
filters in the s-domain is shown below.

Page 40 of 219

KMotion User Manual

If an s-domain filter type is selected and its corresponding parameters specified, then depressing the
Compute pushbutton will convert the s-domain transfer function to the z-domain using Tustin's
approximation (with frequency pre-warping) and automatically fills in the z-domain coefficients. Note
that KMotion always utilizes the current (most recently computed or entered) z-domain coefficients,
regardless of any changes that might be made to the s-domain section.

Note that the Bode Plot Screen has the capability to graph the combined transfer function of all three
IIR filters and the PID filter. This is referred to as the Servo Compensation. To view the transfer
function of a single IIR filter, set the other filter and PID sections to unity (for PID set P=1, I=0, D=0
or for an IIR Filter B0=1, B1= B2=A1=A2=0).

Below are examples of each of the s-domain filter types (shown individually):

Low Pass (1st order)
A Low Pass filter is commonly used in a servo system to reduce high frequency noise (or spikes) in the
output. It also has the desirable effect of decreasing the gain at high frequencies. If a system's gain at
high frequencies is increased sufficiently to reach 0 db it may become unstable. Unfortunately it has
the effect of introducing phase lag (negative phase) which will reduce the phase margin. A 1st order
Low Pass filter has 45 degrees phase and attenuation of -3db at the specified cutoff frequency. The
cutoff frequency should normally be specified much higher than the servo bandwidth in order to have
only a small phase lag at the system's bandwidth.

Low Pass (2nd order)
A 2nd order Low Pass filter is commonly used in a similar manner as a 1st order low pass filter, except
that it has higher attenuation than a 1st order low pass filter. Unfortunately it also introduces more
phase lag than a 1st order low pass filter. In most cases the cutoff frequency for a 2nd order low pass
filter will have to be specified at a higher frequency than a 1st order filter, in order to have similar
phase lag at the system bandwidth frequency. Even so, the 2nd order low pass filter is usually
preferable in that it provides slightly more high frequency attenuation and "smoothing" of the output.

A 2nd order Low Pass filter also allows a Q parameter which changes the sharpness of the filter. A

Page 41 of 219

http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#phase_margin
http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm
http://www.dynomotion.com/Help/FILTER~1/LowPassBig.PNG

KMotion User Manual

smaller value of Q results in a sharper filter at the expense of some peaking (gain increases before
decreasing). A Q value of 1.41 (called a Butterworth filter), shown immediately below, is the minimal
value that may be specified without peaking.

A Q value of 0.7 shows "peaking".

Notch
A Notch filter is commonly used in servo system when a sharp mechanical resonance would otherwise
cause a system to become unstable. A Notch filter is able to attenuate a very localized range of
frequencies. It has a damping factor, η, which effects sharpness or width of the notch. The
disadvantage of using a notch filter is some phase lag which tends to decrease phase margin. The
introduced phase lag will be less the narrower the notch is (less damping), as well as the distance the
notch frequency is above the system bandwidth.

Shown below are two notch filters both at 400 Hz, one with 0.2 damping and the other with 0.4
damping.

Page 42 of 219

http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#phase_margin
http://www.dynomotion.com/Help/FILTER~1/LowPass2ndBig.PNG
http://www.dynomotion.com/Help/FILTER~1/LowPass2ndQ7Big.PNG

KMotion User Manual

Pole-Zero
A Pole-Zero filter is commonly used in a lead-lag configuration shown below to shift the phase
positive at the 0 db crossover frequency of the system in order to increase phase margin. The filter
shown has maximum positive phase of approximately 80 degrees at 200 Hz. This is accomplished by
setting the N1,N2 (zeros or numerator frequencies) 2X lower than 200 Hz (100 Hz), and the D1,D2
(poles or denominator frequencies) 2X higher than this (400 Hz). A lead-lag filter (or compensator)
may often be used in place of derivative gain (in the PID stage), and has a significant advantage of
lower high frequency gain. If a system's gain at high frequencies is increased sufficiently to reach 0 db
it may become unstable.

Page 43 of 219

http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#phase_margin
http://www.dynomotion.com/Help/FILTER~1/Notchp2Big.PNG
http://www.dynomotion.com/Help/FILTER~1/Notchp4Big.PNG

KMotion User Manual

Copy C Code to Clipboard
This pushbutton causes the current z-domain filter coefficients to be copied to the
clipboard in a form that may be pasted directly into a KMotion C Program, see also
the C Program Screen.

ch0->iir[0].B0=232.850006;
ch0->iir[0].B1=-450.471008;
ch0->iir[0].B2=217.869995;
ch0->iir[0].A1=1.001990;
ch0->iir[0].A2=-0.250994;
ch0->iir[1].B0=1.000000;
ch0->iir[1].B1=0.000000;
ch0->iir[1].B2=0.000000;
ch0->iir[1].A1=0.000000;
ch0->iir[1].A2=0.000000;
ch0->iir[2].B0=0.175291;
ch0->iir[2].B1=0.350583;
ch0->iir[2].B2=0.175291;
ch0->iir[2].A1=0.519908;
ch0->iir[2].A2=-0.221073;

Download
The Download push button downloads the filters for the selected axis (along with
all axis configuration and tuning parameters) to the Kmotion.

Page 44 of 219

http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm
http://www.dynomotion.com/Help/FILTER~1/LeadLagBig.PNG

KMotion User Manual

Step Response Screen

(Click on above image to jump to relative topic)
The Step Response Screen allows changes to system tuning parameters and allows measurement and
graphs of the system's time response for either a Move Profile or a Step Function. The graph shown
above is of an applied step function of 400 counts. The graphs shown below are of a profiled move
(and back) of 400 counts. The first has the Output drive hidden and the second has the Output drive
displayed. Click on the graphs for a larger view. Note that the Output drive signal contains large
spikes. This is the result of quantization error in the measured position. Quantization error in the
measured position makes it appear to the system as if there was no motion, and then suddenly as if
there was a relatively quick motion of one count in a single servo sample cycle. This is a non-linear
effect. In some cases these "spikes" may exceed the output range causing saturation a still further non-
linear effect. A low pass filter may be used to "smooth" the output, see the IIR Filter Screen, but has
limits. Attempting too much "smoothing" by setting a lower frequency will eventually have an effect
on the performance of the system, reducing the phase margin. Normally, the cutoff frequency of the
low pass filter should be significantly larger than the system bandwidth.

Page 45 of 219

http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#phase_margin
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm
http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#linear
http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#linear

KMotion User Manual

There are three basic time domain plot types that may be selected from the drop down list, which are
shown below.

They consist of either:

1. Commanded Position, Measured Position, and Motor Output
2. Position Error and Motor Output

Page 46 of 219

http://www.dynomotion.com/Help/STEPSC~1/MoveGraphBig.PNG
http://www.dynomotion.com/Help/STEPSC~1/MoveGraphOutputBig.PNG

KMotion User Manual

3. Commanded Velocity, Measured Velocity, and Motor Output

For all three plot types the Motor Output is always displayed as a secondary Y axis on the right side of
the graph. The other plotted values are on the primary left Y axis. The X axis is always time in
seconds. After a particular plot type has been selected, each individual plot variable may be displayed
or hidden by selecting the checkbox with the corresponding name (and color) of the variable.

Any portion of the graph may be zoomed by left-click dragging across the graph. Simply select the area
of interest. Right clicking on the graph will bring up a context menu that allows zooming out
completely or to the previous zoom level.

Below is an example of a graph of Position Error (for the same 400 count move shown above).
Position Error is defined as Measured Position - Commanded Position. The same data as that is plotted
in the Command/Position plots is used, however instead of plotting both values, the difference is
plotted. Note that because the Measured Position is quantized to integer encoder counts, the
quantization effect is also observed in the Position Error.

The third type of plot displays the Velocity of the Commanded and/or Measured Position. Velocity
units are Position Units per second. When a Move is commanded, a motion profile is computed which
achieves the motion in the shortest time without exceeding the maximum allowed velocity,
acceleration, or jerk. Because the Command is a theoretical profile computed using floating point
arithmetic, it is very smooth. The blue graph immediately below shows such a plot. In a velocity
graph, slope in the graph represents acceleration. In this case a relatively low value specified for
maximum jerk causes the changes in slope to be gradual. The second plot below is the same data but
with the Measured velocity displayed along with the Commanded velocity. Because of encoder
resolution limitations, measured velocity calculated using a simple position difference per sample
period tends to be highly quantized as shown. In this example even at our peak velocity at ~ 23,000
position counts per second this results in a maximum of only 3 position counts per servo sample period.

Page 47 of 219

KMotion User Manual

The velocity graph below, shows the effect of setting the maximum allowed jerk to a very large value
(100X higher than the graph above). Note how the slope of the velocity changes abruptly which
represents a high rate of change of acceleration (jerk).

Page 48 of 219

http://www.dynomotion.com/Help/STEPSC~1/VelCmdOnlyGraphBig.PNG
http://www.dynomotion.com/Help/STEPSC~1/VelGraphBig.PNG

KMotion User Manual

Tuning Parameters - PID
The PID (proportional, integral, and derivative) gains set the
amount of feedback of the error itself (proportional), the
integration of the error (integral), and the derivative of the
position (derivative) that is applied to the output. Also see the

KMotion Servo Flow Diagram.

The units of the proportional gain are in Output Units/Position Units. For example if the Position Units
are in encoder counts, and the Output Units are in PWM counts, then a gain of 10.0 would apply an
output drive of 10 PWM for an error of 1 encoder count.

The units of the integral gain are in Output Units/Position Units per Servo Sample Time. KMotion's
Servo Sample Time is fixed at 90µs. An integrator basically sums the position error every servo
sample. For example, with an integral gain of 10, and an error of 1 encoder count for 5 servo samples,
an output drive of 50 PWM counts would be applied Integrator gain is normally used to achieve high
accuracy. This is because even a very small error will eventually integrate to a large enough value for
there to be an corrective action. In fact, having any integrator gain at all guarantees a steady state error
(average error) of zero. This effect also guarantees that there will always be some overshoot in
response to a step function, otherwise the average error could not be equal to zero.

The units of the derivative gain are in Output Units/Position Units x Servo Sample Time. The
derivative term is simply the change in position from one servo sample to the next. For example, with
a derivative gain of 10, and a position change of 1 encoder count from the previous servo sample, an
output drive of -10 PWM counts would be applied. The negative sign shows that the output is applied
in a manner to oppose motion. Derivative gain has the effect of applying damping, which is a force
proportional and opposite to the current velocity. Although derivative gain is often used successfully in
a control system, consider using a lead/lag filter which performs in a similar manner, but doesn't have

Page 49 of 219

http://www.dynomotion.com/Help/AnalogIOScreen/AnalogIOScreen.htm#PWMs
http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/STEPSC~1/VelCmdOnlyHiJerkGraphBig.PNG

KMotion User Manual

the undesirable feature of increasing gain at high frequencies.

Tuning Parameters - max limits
KMotion's max limits allow several points in the Servo Flow Diagram
to be clamped, or limited to a specified range. The limits in the flow

diagram are shown as a clamp symbol . This capability is often
useful in controlling how the system responds to extreme situations.

Maximum output limit is used to limit the maximum applied value, in counts, to the output drive. The
output drive may be either one of the on-board PWM outputs or a DAC value that drives an external
amplifier.

Maximum integrator limit is used to restrict the maximum value of the integrator. This effect is often
used to avoid an effect referred to as integrator "wind up". Without any integrator limit, consider the
case where somehow a substantial error is maintained for a significant period of time. For example
turning a motor shaft by hand for several seconds. During this time the integrator would ramp up to an
extremely large value. When the motor shaft was released, it would accelerate at maximum and
overshoot the target by a huge amount until the integrator could ramp back down to a reasonable
value. This often results in a servo slamming into a limit. The maximum integrator limit prevents this
from occurring. Often the main purpose for using an integrator is to overcome static friction in order to
reduce the final error to zero. This usually requires only a small fraction of total output range. In
almost all cases it is of no value to allow the integrator to exceed the maximum output value.

Maximum error limits the maximum value allowed to pass through the servo compensator. The units
are the same as position units. Typically, when a servo loop is operating normally, its following error
is a small value. When some extreme even occurs, such as a sudden large step command, or possibly a
large disturbance the error may become very large. In some cases there may be benefit to limiting the
error to a reasonable value.

Tuning Parameters - Motion Profile
The Motion Profile parameters set the maximum allowed velocity (in position
units per second), the maximum allowed acceleration (in position units per
second2), and the maximum allowed jerk (in position units per second3). These
parameters will be utilized for any independent (non coordinated motion) move
command for the axis. The acceleration and jerk also apply to jog commands
(move at continuous velocity) for the axis.

 Tuning Parameters - Feed Forward
KMotion's Feed Forward may often be used to dramatically reduce the following
error in a system. See the Servo Flow Diagram to see precisely how it is
implemented. The idea behind feed forward is to observe the velocity and
acceleration of the command signal and anticipate a required output and to apply
it without waiting for an error to develop.

Page 50 of 219

http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/AnalogIOScreen/AnalogIOScreen.htm#DACs
http://www.dynomotion.com/Help/AnalogIOScreen/AnalogIOScreen.htm#PWMs
http://www.dynomotion.com/Help/ServoFlowDiagram.htm

KMotion User Manual

Most motion systems are constructed in manner where some sort of motor force is used to accelerate a
mass. In these cases whenever an acceleration is required a force proportional to the acceleration will
be required to achieve it. Acceleration feed forward may be used to reduce the amount that the
feedback loop must correct. In fact, proper feed forward reduces the requirement on the feedback from
the total force required to accelerate the mass, to only the variation in the force required to accelerate
the mass.

Similarly most servo systems require some amount of force that is proportional to velocity simply to
maintain a constant velocity. This might be due to viscous friction, or possibly motor back emf (electro
motive force). In any case velocity feed forward may be used to reduce the demands of the feedback
loop resulting in smaller following error.

The normal procedure to optimize feed forward is to select plot type - position error, and measure
moves using the Move Command (Step functions should not be used as step functions are instantaneous
changes in position that represent infinite velocity and acceleration).

Note that in the Servo Flow Diagram the feed forward is injected before the final IIR Filter. This
allows any feed forward waveforms to be conditioned by this filter. Feed forward pulses may be
relatively sharp pulses to make rapid accelerations that may often tend to disturb a mechanical
resonance in the system. Usually a system with a sharp resonance will benefit from a notch filter to
improve the stability and performance of the servo loop. By placing the notch filter as the last filter in
the servo loop, the feed forward waveform will also pass through this filter and the result is that the
feed forward will cause less excitation of the mechanism than it would otherwise..

Tuning Parameters - Dead Band
Dead band is used to apply a different gain to the region near zero than the
rest of the region. Usually either zero gain or a gain much less than 1 is used
within the dead band range. See the Servo Flow Diagram for the exact
location of where the dead band is inserted. Dead band is a means of
introducing "slop" into a system. This usually results in less accuracy and
performance, but may reduce or eliminate limit cycle oscillations while

resting at the target position.

The values shown (range = 0, gain = 1) are used to defeat any
dead band. The chart shows the resulting input/output for
range = 2, gain = 0. The slope of the graph is always 1 outside
of the specified +/- range, and the specified gain with the +/-
range.

Page 51 of 219

http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm
http://www.dynomotion.com/Help/ServoFlowDiagram.htm

KMotion User Manual

 Measurement
To perform a measurement and display the response, select the time
duration to gather data, and the move or step size to perform, and press
either the Move or Step buttons. If the axis is currently enabled, it will
be disabled, all parameters from all screens will be downloaded, the
axis will be enabled, the move or step will be performed while the data
is gathered, the data will then be uploaded and plotted.

A Move will hold position for a short time, perform a motion of the
specified amount from the current location, pause for a short time, and

then a second motion back to the original location.

A Step will hold position for a short time, perform a step of the specified amount from the current
location, pause for a short time, and then a second step back to the original location.

The maximum time that data may be collected is 3.5 seconds (3.5 seconds / 90µs = 38,888 data
points). Note that collecting data at this rate allows zooming while still maintaining high resolution.

Axis Control
The Axis Control buttons are present to conveniently disable (Kill), Zero, or Enable
an axis. If the axis becomes unstable (possible due to a gain setting too high), the
Kill button may be used to disable the axis, the gain might then be reduced, and then
the axis may be enabled. The Enable button downloads all parameters from all
screens before enabling the axis in the same manner as the Measurement buttons
described above.

Note for brushless output modes that commutate the motor based on the current
position, Zeroing the position may adversely affect the commutation.

Save/Load Data
The Save/Load Data buttons allow the captured Step Plot to be saved to a text file
and re-loaded at a later time. The text file format also allows the data to be
imported into some other program for display or analysis. The file format consists
of one line of header followed by one line of 5 comma separated values, one line for
each sample. The values are:

1. Sample Number
2. Time, Seconds
3. Command
4. Position
5. Output

Page 52 of 219

KMotion User Manual

Example of data file follows:

Sample,Time,Command,Position,Output
0,0,5,5,-0.3301919
1,9e-005,5,5,-0.3300979
2,0.00018,5,5,-0.3300258
3,0.00027,5,5,-0.3299877
4,0.00036,5,5,-0.3299999
5,0.00045,5,5,-0.3300253
6,0.00054,5,5,-0.3300359
7,0.00063,5,5,-0.3300304
8,0.00072,5,5,-0.3300199
9,0.00081,5,5,-0.3300156
10,0.0009,5,5,-0.3300157
62
.
.
.

Page 53 of 219

KMotion User Manual

Four Axis, DSP/FPGA-based Motion Controller

DynoMotion’s KMotion card combines a DSP, FPGA, Output stage, USB,
and a PC-based development environment to create a versatile and
programmable single-board motion solution. Designed for four-axis
control, the KMotion provides advanced control for torque, speed and
position applications for any mix of stepper, DC brushless, and DC brush
motors. The integrated output stages allows ultra-smooth stepper operation
and high-performance DC operation while reducing space, cabling,
interface headaches, and board count. KMotion uses flash memory to store
and run multiple-thread compiled C code on a 600 MFLOP processor with

native 64-bit floating point support for stand-alone operation. A PC connected with a USB cable can be
used for control and monitoring.

The included PC-based integrated development environment combines configuration, status,
programming, and advanced diagnostic and tuning tools such as Bode plots and signal filtering. GCode
support allows coordinated moves between axes. Libraries for controlling the KMotion card via Visual
C++ and Visual Basic are included, as well as a free C compiler. Thread-safe operation allows the IDE
to be used in conjunction with a user application for control and debugging.

The KMotion packs a lot of IO into its 5.5 x 6.5 x 2.0 in package. Eight Full Bridges are controlled by
30 KHz, 10 bit PWMs. Four 165 watt onboard current-limited power amps provide 3A steady, 6A Peak
current at 55V. The KMotion utilizes 28 Bi-directional I/O bits, shared between predefined limit
switches and user-defined I/O. In addition, there are four channels of analog input (+/- 10V) and 8
channels of analog output (4@+/-10V, 4@ 0-4V).

www.DynoMotion.com, Calabasas, CA. [sales@dynomotion.com]

Page 54 of 219

KMotion User Manual

JR1 - 5V Power (regulated +/- 5%)
Typical current = 0.7Amps with no user I/O connected. More current may be required dependent on
the amount of Digital I/O and Analog +/- 15V consumed by the user. Up to 2 watts of +/-15 volts is
generated on board from this 5V supply (most of which is available for external use). 5V @ 2.5A
should be more than sufficient under all conditions. The 12V input is not used internally by the board,
but is routed to pins on the 37pin DB Motor connector and the 16 pin Aux Connector for the
convenience of the user. 5V power is also routed to the 37pin DB Motor connector, 5V power may be
applied at whichever connector is more convenient. This connector is only rated for 6.5Amps per
connection, if more total motor current is required, power should be externally routed to the 37pin DB
Supply 0-3 inputs directly.

This connector is a standard PC-disk drive power connector which makes it easy to drive the board and
small to medium size motors (< 12V) with an inexpensive PC power supply and very few external
connections. Simply plug the PC power supply here, jumper the +12V signals on the DB37 Pin
connector to the desired motor supply inputs, and connect your motors.

Page 55 of 219

KMotion User Manual

JDP1 - Motor/Motor Supply (12-55V) Connector
The KMotion motion control board is basically a 4 axis Motor controller that consists of 8 full bridge
drivers (see figure 1). A full bridge driver is able to apply a positive or negative voltage to a load using
only a single positive supply. The load is connected across the OUTA and OUTB terminals. The 8 full
bridge drivers are grouped into 4 pairs, where a pair of full bridge drivers are associated with a motor
axis. This is because some types of motors (stepper motors or 3-phase motors require more than a
single full bridge to drive them).

Each axis (and pair of full bridge drivers) share a common power supply pin, heat sink, encoder input,
and current sense circuitry. Each axis may be of a different type (DC-Brush, 3-phase brushless, or
stepper) and may use a different supply voltage (12-55V DC). If a DC-Brush motor is used for an axis
only one of the full bridge drivers are used, the other is left unconnected. 3-phase brushless motors use
1½ full bridges (3 - half bridges), and stepper motors have 2 coils which require both full bridges.

Page 56 of 219

KMotion User Manual

 Motor type DC -Brush Motor type - 3 Phase
brushless Motor type - Stepper

Axis
0

Connect Motor across OUTA0-
OUTB0

Leave OUTA1-OUTB1
disconnected

Connect Phase A to
OUTA0

Connect Phase B to OUTB0

Connect Phase C to OUTA1

Leave OUTB1 disconnected

Connect Coil A across OUTA0-
OUTB0

Connect Coil B across OUTA1-
OUTB1

Axis
1

Connect Motor across OUTA2-
OUTB2

Leave OUTA3-OUTB3
disconnected

Connect Phase A to
OUTA2

Connect Phase B to OUTB2

Connect Phase C to OUTA3

Leave OUTB3 disconnected

Connect Coil A across OUTA2-
OUTB2

Connect Coil B across OUTA3-
OUTB3

Axis
2

Connect Motor across OUTA4-
OUTB4

Leave OUTA5-OUTB5
disconnected

Connect Phase A to
OUTA4

Connect Phase B to OUTB4

Connect Phase C to OUTA5

Leave OUTB5 disconnected

Connect Coil A across OUTA4-
OUTB4

Connect Coil B across OUTA5-
OUTB5

Axis
3

Connect Motor across OUTA6-
OUTB6

Leave OUTA7-OUTB7
disconnected

Connect Phase A to
OUTA6

Connect Phase B to OUTB6

Connect Phase C to OUTA7

Leave OUTB7 disconnected

Connect Coil A across OUTA6-
OUTB6

Connect Coil B across OUTA7-
OUTB7

Also available on this connector is PBRST#. Short PBRST# to ground to reset the board. This signal
is internally de-bounced. Under normal conditions, on-board power up reset should suffice so this pin
may be left disconnected. Also connecting this pin to the DOG pin will enable the on board watchdog
circuitry, whenever there is no DSP/FPGA activity detected for 1 second the board will be
automatically reset. This is not normally required and may be left disconnected.

Page 57 of 219

KMotion User Manual

JP2 - JTAG
This connector is only used for advanced debugging using an XDS510 JTAG in circuit emulator. A
small amount of regulated 3.3V (<0.5 Amp) is available on this connector if needed for external use.

Page 58 of 219

KMotion User Manual

JP3 - Digital/Analog IO
4 channels of +/- 10V analog inputs, 4 channels of +/- 10V analog outputs, 4 channels of 0-4V analog
outputs, 22 LVTTL bi-directional digital I/O, and +5, +15, -15 power supply outputs. Many Digital
I/O bits are pre-defined as encoder, home, or limit inputs (see table below) but if not required for the
particular application may be used as general purpose I/O. Digital Outputs may sink/source 10 ma.
Digital I/O is LVTTL (3.3V) but is 5 V tolerant.

Caution! This connector contains +/- 15 v signals. Shorts to low voltage pins are likely to cause
permanent damage to the board!

Page 59 of 219

KMotion User Manual

Pin Name Description
1 ADC0_10V ADC Chan 0 +/- 10V input
2 ADC1_10V ADC Chan 1 +/- 10V input
3 ADC2_10V ADC Chan 2 +/- 10V input
4 ADC3_10V ADC Chan 3 +/- 10V input
5 DAC0_10V DAC Chan 0 +/- 10V output
6 DAC1_10V DAC Chan 1 +/- 10V output

Page 60 of 219

KMotion User Manual

7 DAC2_10V DAC Chan 2 +/- 10V output
8 DAC3_10V DAC Chan 3 +/- 10V output
9 DAC4 DAC Chan 4 0-4V output
10 DAC5 DAC Chan 5 0-4V output
11 DAC6 DAC Chan 6 0-4V output
12 DAC7 DAC Chan 7 0-4V output
13 VM15 -15V @ 0.07 Amps Output
14 V15 +15V @ 0.07 Amps Output

15 IO0 Gen Purpose LVTTL I/O or Axis 0 Encoder
Input Phase A

16 IO1 Gen Purpose LVTTL I/O or Axis 0 Encoder
Input Phase B

17 IO2 Gen Purpose LVTTL I/O or Axis 1 Encoder
Input Phase A

18 IO3 Gen Purpose LVTTL I/O or Axis 1 Encoder
Input Phase B

19 IO4 Gen Purpose LVTTL I/O or Axis 2 Encoder
Input Phase A

20 IO5 Gen Purpose LVTTL I/O or Axis 2 Encoder
Input Phase B

21 IO6 Gen Purpose LVTTL I/O or Axis 3 Encoder
Input Phase A

22 IO7 Gen Purpose LVTTL I/O or Axis 3 Encoder
Input Phase B

23 IO8 Gen Purpose LVTTL I/O or Axis 0 Home
24 IO9 Gen Purpose LVTTL I/O or Axis 1 Home
25 IO10 Gen Purpose LVTTL I/O or Axis 2 Home
26 IO11 Gen Purpose LVTTL I/O or Axis 3 Home
27 IO12 Gen Purpose LVTTL I/O or Axis 0 + Limit
28 IO13 Gen Purpose LVTTL I/O or Axis 0 - Limit
29 IO14 Gen Purpose LVTTL I/O or Axis 1 + Limit
30 IO15 Gen Purpose LVTTL I/O or Axis 1 - Limit
31 IO16 Gen Purpose LVTTL I/O or Axis 2 + Limit

Page 61 of 219

KMotion User Manual

32 IO17 Gen Purpose LVTTL I/O or Axis 2 - Limit
33 IO18 Gen Purpose LVTTL I/O or Axis 3 + Limit
34 IO19 Gen Purpose LVTTL I/O or Axis 3 - Limit
35 IO20 Gen Purpose LVTTL I/O
36 IO21 Gen Purpose LVTTL I/O
37 VDD5 +5 Volts Output
38 VDD5 +5 Volts Output
39 GND Digital and Analog Ground
40 GND Digital and Analog Ground

JP4 - Aux Connector
Auxiliary connector which supplies power, reset, one 0-4V DAC, and 8 digital I/O normally connected
to optional expansion daughter boards. If no expansion module is required these digital I/O may be
used for general purpose use. Note: IO20 and IO21 are also routed to JP3

Page 62 of 219

KMotion User Manual

Pin Name Description
1 VDD5 +5 Volts Output
2 VDD12 +12 Volts Output
3 DAC7 DAC Chan 7 0-4V output
4 RESET# Power up Reset (low true) output
5 IO20 Gen Purpose LVTTL I/O
6 IO21 Gen Purpose LVTTL I/O
7 IO22 Gen Purpose LVTTL I/O
8 GND Digital and Analog Ground
9 GND Digital and Analog Ground
10 IO23 Gen Purpose LVTTL I/O
11 IO24 Gen Purpose LVTTL I/O
12 IO25 Gen Purpose LVTTL I/O
13 IO26 Gen Purpose LVTTL I/O
14 IO27 Gen Purpose LVTTL I/O
15 VM15 -15V @ 0.07 Amps Output
16 V15 +15V @ 0.07 Amps Output

Fan and Aux Switches
Kmotion contains two SPST switches to ground capable of driving up to 30V @ 2A. One is dedicated
to driving the cooling fan and one is available for another use. If the fan is not required by the
application (less than 2Amps drawn on all axis) it may also be used to drive an external load. Each of

Page 63 of 219

KMotion User Manual

the switches is connected to a 2 pin connector. One of the pins is connected to the 5V supply and the
other pin is switched to ground. If the load requires 5V (i.e.. a 5V fan) it may be connected directly
across the 2 pins. If other than a 5V load is required, then external user supplied wiring to the supply is
required and only the pin that is switched to ground should be connected. See below.

Page 64 of 219

KMotion User Manual

Here is an example of how a solenoid may be driven with the Auxiliary Switch:

Analog I/O circuit
Circuit diagram of analog I/O buffers showing conversion from industry standard +/- 10V ranges to
onboard 0-4V ADC/DAC converters. Note 50K input impedance. REFP = 4V, REFK = 1.43V

Page 65 of 219

KMotion User Manual

USB Installation
The first time the KMotion board is connected to a computer's USB port this message should be
displayed near the Windows™ Task Bar.

Shortly thereafter, the New Hardware Wizard Should appear.

If you haven't already, download and install the complete KMotion Software including drivers
available at:

DynoMotion Software Download
Select: "Install from a list or specific location (Advanced)" and click Next

Page 66 of 219

http://dynomotion.com/Software/Download.html

KMotion User Manual

Browse to within the subdirectory where you selected the KMotion Software to be installed to the
"USB DRIVER" subdirectory.

(If the software was installed into the default subdirectory, the location would be: C:\KMOTION\USB
DRIVER)
Click Next.

Page 67 of 219

KMotion User Manual

If this screen appears select Continue Anyway.

If successful, the above screen should appear. Click Finish.

Page 68 of 219

KMotion User Manual

The KMotion Board is now ready for use. To verify proper USB connection to the KMotion Board,
use the Windows™ Start Button to launch the KMotion Application.

At the main tool bar select the "Console" button to Display the Console Screen.

Page 69 of 219

KMotion User Manual

Press the "Send" button to send a blank line to the KMotion Board. The following should be displayed
indicating successful communication between the PC and KMotion Board.

KMotion 2.2
Ready

Page 70 of 219

KMotion User Manual

USB Installation Trouble Shooting
If properly installed, a DynoMotion KMotion 2.2 Device should appear under Universal Serial Bus
controllers within the Device Manager.

If within Control Panel – System - Device Manager – Universal Serial Bus controllers

There is an item “USB High Speed Serial Converter”

This is an incorrect driver.

Perform the following steps to change the driver:

Right Click – select “Update Driver”

Page 71 of 219

KMotion User Manual

Select “Install from a specific location (Advanced)” then Next

Select “Don’t Search I will choose the driver to install” then Next

Select “Have Disk”

Browse to within the directory chosen during the KMotion Installation (Default is C:\KMotion) to
subdirectory “USB Driver”

Select file “ftd2xx.inf”

Select OK

Within the Hardware Update Wizard select to highlight “DynoMotion KMotion 2.2 Device”

then Next

Select “Continue Anyway”

Select Finish

Within Control Panel – System - Device Manager – Universal Serial Bus controllers

There should now be an item “DynoMotion KMotion 2.2 Device”

Page 72 of 219

KMotion User Manual

Page 73 of 219

KMotion User Manual

Page 74 of 219

KMotion User Manual

Data Gathering

KMotion provides a flexible method for capturing data of all types every servo sample period (90µs).
This same method is how KMotion gathers step response and Bode plot data.

Basically a list of addresses and data types are defined. An end address of where to stop capturing data
is set, and when triggered the Servo Interrupt will capture the specified data values. All values are
converted to double precision numbers before being placed into the gather buffer. The maximum size
of the Gather Buffer is 1,000,000 double precision values (8 MBytes).
#define MAX_GATHER_DATA 1000000 // Size of gather buffer (number of doubles, 8 bytes each).

The following example shows how to setup to capture the two PWM drives (for a stepper motor) and
the commaned destination for a 0.5 second time period, trigger the capture, make a simple move, wait
until the capture is complete, and print the results.

#include "KMotionDef.h"
main()
{

int i,n_Samples = 0.5 / TIMEBASE;
gather.Inject = FALSE; // Don't inject any Data anywhere
gather.list[0].type = GATHER_LASTPWM_TYPE; // Gather PWM 0
gather.list[0].addr = &LastPWM[0];
gather.list[1].type = GATHER_LASTPWM_TYPE; // Gather PWM 1
gather.list[1].addr = &LastPWM[1];
gather.list[2].type = GATHER_DOUBLE_TYPE; // Gather Dest axis 0
gather.list[2].addr = &chan[0].Dest;
gather.list[3].type = GATHER_END_TYPE;
gather.bufptr = (double *)0xfffffffc; // force more than endbuf
gather.endptr = gather_buffer + 3 * n_Samples;
TriggerGather(); // start capturing data
MoveRel(0,20); // Start a motion
while (!CheckDoneGather()) ; // what till all captured
// print all captured data (every 50th sample)
for (i=0; i<n_Samples; i+=10)

Page 75 of 219

KMotion User Manual

printf("%d,%f,%f,%f\n", i,gather_buffer[i*3],
gather_buffer[i*3+1],
gather_buffer[i*3+2]);

}

Data will be printed to the KMotion Console Screen which is also written to a permanent log file at:
<KMotionInstallDir>\KMotion\Data\LogFile.txt

Normally data scrolls off of the Console Screen into the permanent log file, to flush all data into the log
file, exit the KMotion application.

An Excel plot of the captured data is shown below.

Page 76 of 219

KMotion User Manual

Page 77 of 219

KMotion User Manual

KMotionDLL

Page 78 of 219

KMotion User Manual

KMotion Quick Reference
Send Commands
WriteLine
WriteLineReadLine
ReadLineTimeOut

Board Locks
WaitToken
KMotionLock
ReleaseToken
Failed

Console
ServiceConsole
SetConsoleCallback

Coff Loader
LoadCoff

Compiler
CompileAndLoadCoff

USB
ListLocations

Page 79 of 219

KMotion User Manual

KMotion DLL Functions

int WriteLine(int board, const char *s);

Writes a null terminated string of characters to a specified KMotion Board. There is no wait for any
response.

Return Value
0 if successful, non-zero if unsuccessful (invalid board specified)

Parameters
board

specifies which board in the system the command applies to

s

Null terminated string to send

Example

#include "KMotionDLL.h"
CKMotionDLL KM;

if (KM.WriteLine(0, "Move0=1000") MyError();

int WriteLineReadLine(int board, const char *s, char *response);

Writes a null terminated string of characters to a specified KMotion Board. Waits for a response
string. This command is thread safe. It waits for the token for the specified board, sends the command,
waits for the response, then releases the board.

Return Value
0 if successful, non-zero if unsuccessful (invalid board specified, timeout on the response)

Page 80 of 219

KMotion User Manual

Parameters
board

specifies which board in the system the command applies to

s

Null terminated string to send

response

Buffer to receive the null terminated string received as response

Example

#include "KMotionDLL.h"
CKMotionDLL KM;
char resp[256];

while
{
 if (KM.WriteLineReadLine(0, "CheckDone0",resp) MyError();

 if (strcmp(resp,"1")==0) break;

}

int ReadLineTimeOut(int board,char *buf, int TimeOutms);

Waits for a response string from a previously issued command. Note in a multi-process or multi thread
environment the KMotion board should be locked prior to issuing a command that has a response(s),
Otherwise there is a possibility that another process or thread may receive the expected response.

Return Value
0 if successful, non-zero if unsuccessful (invalid board specified, timeout on the response)

Page 81 of 219

KMotion User Manual

Parameters
board

specifies which board in the system the command applies to

buf

Buffer to receive the Null terminated string received as response

TimeOutms

Amount of time to receive a response

Example

#include "KMotionDLL.h"
CKMotionDLL KM;
char resp1[256];

char resp2[256];

char resp3[256];

 // first get the token for the board to allow uninterrupted access
if (KM.WaitToken(0)!=KMOTION_LOCKED) MyError();

// tell the board to send 24 (32 bit) words at offset 0
if (KM.WriteLine(0,"GetGatherHex 0 24")) MyError();

// receive the data (8 hex words per line)
if (KM.ReadLineTimeout(0,resp1)) MyError();
if (KM.ReadLineTimeout(0,resp2)) MyError();
if (KM.ReadLineTimeout(0,resp3)) MyError();

// release our access to the board

KM.ReleaseToken(board);

Page 82 of 219

KMotion User Manual

int WaitToken(int board);

Waits until the token for the specified KMotion board can be obtained. Call this function whenever
uninterrupted access to a KMotion board is required. For example before a command where several
lines of response will be returned. Release the token as quickly as possible by calling the
ReleaseToken function as all other access to the locked board will be blocked until released.

Return Value
0 if successful, non-zero if unsuccessful (invalid board specified)

Parameters
board

specifies which board in the system the command applies to

Example

#include "KMotionDLL.h"
CKMotionDLL KM;
char resp1[256];

char resp2[256];

char resp3[256];

// first get the token for the board to allow uninterrupted access
if (KM.WaitToken(0)!=KMOTION_LOCKED) MyError();

// tell the board to send 24 (32 bit) words at offset 0
if (KM.WriteLine(0,"GetGatherHex 0 24")) MyError();

// receive the data (8 hex words per line)
if (KM.ReadLineTimeout(0,resp1)) MyError();
if (KM.ReadLineTimeout(0,resp2)) MyError();
if (KM.ReadLineTimeout(0,resp3)) MyError();

// release our access to the board

KM.ReleaseToken(board);

Page 83 of 219

KMotion User Manual

int KMotionLock(int board);

Attempts to obtain the token of the specified KMotion board.. Call this function whenever
uninterrupted access to a KMotion board is required. For example before a command where several
lines of response will be returned. Release the token as quickly as possible by calling the
ReleaseToken function as all other access to the locked board will be blocked until released. This
function is similar to the WaitToken function, except that it returns immediately (instead of waiting) if
the board is already locked.

Return Value
KMOTION_LOCKED=0, // (and token is locked) if KMotion is available for use
KMOTION_IN_USE=1, // if already in use
KMOTION_NOT_CONNECTED=2 // if error or not able to connect

Parameters
board

specifies which board in the system the command applies to

Example

#include "KMotionDLL.h"
CKMotionDLL KM;

char resp1[256];

char resp2[256];

char resp3[256];

int result;

// first get the token for the board to allow uninterrupted access
do

{

 result = KM.KMotionLock(0);

 if (result == KMOTION_NOT_CONNECTED) MyError();

Page 84 of 219

KMotion User Manual

 if (result == KMOTION_IN_USE) DoOtherProcessing();

}

// tell the board to send 24 (32 bit) words at offset 0
if (KM.WriteLine(0,"GetGatherHex 0 24")) MyError();

// receive the data (8 hex words per line)
if (KM.ReadLineTimeout(0,resp1)) MyError();
if (KM.ReadLineTimeout(0,resp2)) MyError();
if (KM.ReadLineTimeout(0,resp3)) MyError();

// release our access to the board

KM.ReleaseToken(board);

void ReleaseToken(int board);

Releases the previously obtained token of the specified KMotion board. See WaitToken and
LockKMotion functions. The token should always be released as quickly as possible as all other access
to the locked board will be blocked until released.

Return Value
none - the function can not fail

Parameters
board

specifies which board in the system the command applies to

Example

#include "KMotionDLL.h"
CKMotionDLL KM;
char resp1[256];
char resp2[256];
char resp3[256];
int result;
// first get the token for the board to allow uninterrupted access
do
{
 result = KM.KMotionLock(0);
 if (result == KMOTION_NOT_CONNECTED) MyError();
 if (result == KMOTION_IN_USE) DoOtherProcessing();
}

Page 85 of 219

KMotion User Manual

// tell the board to send 24 (32 bit) words at offset 0
if (KM.WriteLine(0,"GetGatherHex 0 24")) MyError();

// receive the data (8 hex words per line)
if (KM.ReadLineTimeout(0,resp1)) MyError();
if (KM.ReadLineTimeout(0,resp2)) MyError();
if (KM.ReadLineTimeout(0,resp3)) MyError();

// release our access to the board

KM.ReleaseToken(board);

int Failed(int board);

This function should be called whenever an error is detected with a KMotion board. This function
disconnects the driver, flags the board as disconnected, and displays the error message shown below.
A user program may typically detect a timeout error or invalid data error if the KMotion board is
powered down or unplugged while communication is in progress. Calling this function will force any
subsequent attempts to access the board to wait for a board to be connected, re-connect, flush any
buffers, etc...

"Read Failed - Auto Disconnect"

Return Value
always 0 - the function can not fail

Parameters
board

specifies which board in the system the command applies to

Example
#include "KMotionDLL.h"
CKMotionDLL KM;
if (KM.KMotionLock(0) == KMOTION_LOCKED) // see if we can get access
{
 // upload bulk status

 if (UploadStatus())
 {

Page 86 of 219

KMotion User Manual

 // error reading status
 KM.Failed(0);
 }
 KM.ReleaseToken(0);
}

int LoadCoff(int board, const char *Name, unsigned int *EntryPoint,
bool PackToFlash);

This function downloads a compiled C program to the memory of the specified KMotion board.

C Programs that run in the KMotion Board are normally compiled using the included and integrated
compiler in the KMotion Application. Using the KMotion Application the user's C Program should be
loaded into a selected thread and compiled. This will automatically generate a COFF executable with
the same name and in the same directory as the C Source code, but with a .out extension. It is the users
responsibility to keep track of which thread the COFF executable was compiled to execute in.

This function is used to download the COFF executable to the KMotion's memory. The entry point of
the executable will be extracted from the file and retuned to the caller. This entry point address should
then be passed to the KMotion board and associated with the same thread that the file was compiled to
execute in. The entry point should be passed using the "EntryPoint" command (See the example
below).

The downloaded code may then be executed by issuing the "Execute" command

Return Value
returns 0 - if successful

Parameters
board

specifies which board in the system the command applies to

Name

Filename of coff file to download

Page 87 of 219

KMotion User Manual

EntryPoint

Address of the entry point of the C program extracted form the COFF file and returned to

the caller

PackToFlash

Internal system command always specify as false

Example
#include "KMotionDLL.h"
CKMotionDLL KM;
unsigned int EntryPoint;

if (KM.LoadCoff(0, "C:\\test.out", &EntryPoint, false)) return 1;

s.Format("EntryPoint 0 %08X", EntryPoint);
KM.WriteLine(0,s);

KM.WriteLine(0,"Execute 0");

int ServiceConsole(int board);

Services the KMotion Console data stream. The Console is a place where all unsolicited data, such as
errors, or data "Printed" by user programs goes to. In between processing commands, KMotion
uploads any unsolicited data it may have up to the host. The KMotionDLL driver buffers this data until
some process declares itself as a Console Handler (See SetConsoleCallback) and makes calls to
this function ServiceConsole.

This function should be called at regular intervals. If console data is available a call back to the
Console Handler will

occur with one line of data.

Return Value
returns 0 - if successful

Page 88 of 219

KMotion User Manual

Parameters
board

specifies which board in the system the command applies to

Example
#include "KMotionDLL.h"
CKMotionDLL KM;

int ConsoleHandler(const char *buf)
{
 MyLogData(buf);
 return 0;
}

KM.SetConsoleCallback(0, ConsoleHandler);

KM.ServiceConsole(0);

int SetConsoleCallback(int board, CONSOLE_HANDLER *ch);

Sets the user provided console callback function.

Return Value
returns 0 - if successful

Parameters
board

specifies which board in the system the command applies to

ch

name of console handler function

Example
#include "KMotionDLL.h"
CKMotionDLL KM;

int ConsoleHandler(const char *buf)

Page 89 of 219

KMotion User Manual

{
 MyLogData(buf);
 return 0;
}

KM.SetConsoleCallback(0, ConsoleHandler);

KM.ServiceConsole(0);

int CompileAndLoadCoff(int board, const char *Name, int Thread);

or
int CompileAndLoadCoff(int board, const char *Name, int Thread,

char *Err, int MaxErrLen);

Compiles the specified C Program file, downloads the object code to the specified Thread space, and
sets the Entry Point, for the specified thread. Two versions of the function are supplied; one returns
any error messages, the other does not.

The downloaded code may then be executed by issuing the Execute command.

Return Value
returns 0 - if successful

Parameters
board

specifies which board in the system the command applies to

Name

Filename of C Program to compile and download

Thread

Thread number where the program is to be compiled for and downloaded into. Valid range

1...7.

Page 90 of 219

http://www.dynomotion.com/Help/Cmd.htm#Execute
http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm

KMotion User Manual

Err

Caller's supplied buffer for any error messages

MaxErrLen

Length of caller's supplied buffer for any error messages

Example
#include "KMotionDLL.h"
CKMotionDLL KMotion;

if (KM.CompileAndLoadCoff(0, "C:\\MyProgram.c", 1) MyError();
if (KM.WriteLine(0, "Execute1") MyError();
int ListLocations(int *nlocations, int *list);

Returns the number of currently connected KMotion boards and a list of their USB location identifiers

Return Value
returns 0 - if successful

Parameters
nlocations

pointer to integer where the number of locations should be returned

List

pointer to array to be filled in with the list of USB location identifiers

Example
#include "KMotionDLL.h"
CKMotionDLL KM;

Page 91 of 219

KMotion User Manual

int n_boards;
int BoardList[256];

if (KM.ListLocations(&n_boards, BoardList) MyError();

Page 92 of 219

KMotion User Manual

Hardware

Page 93 of 219

Function Parameter Specification

Processor CPU
Memory

TMS320C67-100MHz DSP 600 MFLOP
32/64-Bit Native Floating Point
FLASH 512KBytes
SDRAM 16 Mbytes

Interface Host USB 2.0 Full Speed

Connectors Motor/Power
I/O
Aux IO
USB
System Power

37 pin DSUB
40 pin Header
16 pin Header
Type B
Molex 4-pin (Disk drive type)

Servo Loop Sample Rate
Compensation
Feed Forward

90µs
PID + (3) IIR bi-quad Stages/Axis
Acceleration + Velocity

Axis Number
Type

4
MicroStep/Servo/Brush/Brushless

Power Amps Number
Type
Cont. Current
Peak Current
Max Supply
Min Supply
Independent Supply Inputs
Thermal Protection
Over Current Protection
Under Voltage Protection
Current Measurement

8 Full H-Bridges
Switching 30KHz
3 A each Axis
6 A
+55V
+12V
Yes
Yes
Yes
Yes
Yes

Logic Supply Voltage
Max Current

+5V ±10%
2.5A

User I/O Digital
Encoders
Analog

28 Gen Purpose LVTTL
(4) single-ended, 1 MHz
(4) ±10V ADCs - (4) 0-4V ADC - (4) ±10V DACs

Environment Operating Temperature
Storage Temperature
Humidity

0-40º C
0-40º C
20-90% Relative Humidity, non-condensing

±15V On-board DC-DC
Generator

2 Watts (70ma each supply)

Dimensions Length

Width

Height

6.5 inches (165 mm)

5.0 inches (127 mm)

2.0 inches (50 mm)

KMotion User Manual

Software

Page 94 of 219

Function Parameter Specification

User Programs Language

Number concurrent

Stand alone mode

C

7

Yes

Host Requirements OS

Interface
MS Windows™ 2000, MS Windows™ XP

USB 2.0

Interface Library Multi-Thread

Multi-Process

Multi-Board

MS Windows™ VC++

MS Windows™ VB

Yes

Yes

Yes

Supported

Supported

C Compiler TCC67 Included

G Code Interpreter Included

Script Language ASCII Commands Included

Trajectory Planner Coordinated Motion 4 Axis

Executive Application Configuration

Tuning

User Programs

G Code

Command Console

Status Display

Upload/Download/Save/Load Motor Config

Move/Step Response, Bode Plot, Calc Filters

Integrated IDE - Edit/Compile/Download/Exec

Integrated

ASCII Command Entry - Log Console

Axis/Analog/Digital

KMotion User Manual

Commands (by category):

Parameters
Accel <N>=<A>

CommutationOffset<N>=<

X>

D<N>=<M>

DeadBandGain<N>=<M>

DeadBandRange<N>=<M

>

Dest<N>=<M>
FFAccel<N>=<M>

FFVel<N>=<M>

I<N>=<M>

IIR<N> <M>=<A1> <A2>

<B0> <B1> <B2>

InputChan<M> <N>=<C>

InputGain<M> <N>=<G>

InputMode<N>=<M>

InputOffset<M> <N>=<O>

InvDistPerCycle<N>=<X>

Jerk<N>=<J>

Lead<N>=<M>

LimitSwitch<N>=<H>

MaxErr<N>=<M>

MaxFollowingError<N>=<

M>

MaxI<N> <M>

MaxOutput<N>=<M>

OutputChan<M>

<N>=<C>

OutputMode<N>=<M>

P<N>=<M>

Pos<N>=<P>

StepperAmplitude<N>=<

M>

Vel<N>=<V>

User
Threads
EntryPoint<N> <H>

Execute<N>

Kill<N>

LoadData <H> <N>

SetStartupThread<N>

<M>

I/O
Commands
/Status
ADC<N>

ClearBit<N>

ClearBitBuf<N>

DAC<N> <M>

GetBitDirection<N>

ReadBit<N>

SetBit<N>

SetBitBuf<N>

SetBitDirection<N>=<M

>

SetStateBit<N>=<M>

SetStateBitBuf<N>=<M

>

Output
Stage
3PH<N>=<M> <A>

4PH<N>=<M> <A>

PWM<N>=<M>

PWMR<N>=<M>

Gather
Commands
CheckDoneGather

GatherMove<N> <M>

<L>

GatherStep<N> <M>

<L>

GetGather <N>

GetGatherDec<N>

GetGatherHex<N> <M>

GetInject<N> <M>

Inject<N> <F> <A>

SetGatherDec <N>

<M>

SetGatherHex<N> <M>

Motion Commands
Arc <XC> <YC> <RX> <RY>

 <θ0> <dθ> <Z0> <Z1>

 <a> <c> <d> <tF>

ArcHex <XC> <YC> <RX> <RY>

 <θ0> <dθ> <Z0> <Z1>

 <a> <c> <d> <tF>

CheckDone<N>
CheckDoneBuf

CheckDoneXYZA

DefineCS<X> <Y> <Z> <A>

DisableAxis<N>
EnableAxis<N>

EnableAxisDest<N> <M>

Enabled<N>

ExecBuf

ExecTime
Jog<N>=<V>

Linear <X0> <Y0> <Z0> <A0>

 <X1> <Y1> <Z1> <A1>

 <a> <c> <d> <tF>

LinearHex <X0> <Y0> <Z0> <A0>

 <X1> <Y1> <Z1>

<A1>

 <a> <c> <d>

<tF>

Move<N>=<M>

MoveAtVel<N>=<M> <V>

MoveRel<N>=<M>

MoveRelAtVel<N>=<M> <V>

MoveXYZA <X> <Y> <Z> <A>

OpenBuf
Zero<N>

Page 95 of 219

http://www.dynomotion.com/Help/Cmd.htm#Zero
http://www.dynomotion.com/Help/Cmd.htm#OpenBuf
http://www.dynomotion.com/Help/Cmd.htm#MoveXYZA
http://www.dynomotion.com/Help/Cmd.htm#MoveRelAtVel
http://www.dynomotion.com/Help/Cmd.htm#MoveRel
http://www.dynomotion.com/Help/Cmd.htm#MoveAtVel
http://www.dynomotion.com/Help/Cmd.htm#Move
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Jog
http://www.dynomotion.com/Help/Cmd.htm#ExecTime
http://www.dynomotion.com/Help/Cmd.htm#ExecBuf
http://www.dynomotion.com/Help/Cmd.htm#Enabled
http://www.dynomotion.com/Help/Cmd.htm#EnableAxisDest
http://www.dynomotion.com/Help/Cmd.htm#EnableAxis
http://www.dynomotion.com/Help/Cmd.htm#DisableAxis
http://www.dynomotion.com/Help/Cmd.htm#DefineCS
http://www.dynomotion.com/Help/Cmd.htm#CheckDoneXYZA
http://www.dynomotion.com/Help/Cmd.htm#CheckDone
http://www.dynomotion.com/Help/Cmd.htm#CheckDone
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#SetGatherHex
http://www.dynomotion.com/Help/Cmd.htm#SetGatherDec
http://www.dynomotion.com/Help/Cmd.htm#SetGatherDec
http://www.dynomotion.com/Help/Cmd.htm#Inject
http://www.dynomotion.com/Help/Cmd.htm#GetInject
http://www.dynomotion.com/Help/Cmd.htm#GetGatherHex
http://www.dynomotion.com/Help/Cmd.htm#GetGatherDec
http://www.dynomotion.com/Help/Cmd.htm#GetGather
http://www.dynomotion.com/Help/Cmd.htm#GatherStep
http://www.dynomotion.com/Help/Cmd.htm#GatherStep
http://www.dynomotion.com/Help/Cmd.htm#GatherMove
http://www.dynomotion.com/Help/Cmd.htm#GatherMove
http://www.dynomotion.com/Help/Cmd.htm#CheckDoneGather
http://www.dynomotion.com/Help/Cmd.htm#PWMR
http://www.dynomotion.com/Help/Cmd.htm#PWM
http://www.dynomotion.com/Help/Cmd.htm#4PH
http://www.dynomotion.com/Help/Cmd.htm#3PH
http://www.dynomotion.com/Help/Cmd.htm#SetStateBitN=B
http://www.dynomotion.com/Help/Cmd.htm#SetStateBitN=B
http://www.dynomotion.com/Help/Cmd.htm#SetStateBit
http://www.dynomotion.com/Help/Cmd.htm#SetBitDirection
http://www.dynomotion.com/Help/Cmd.htm#SetBitDirection
http://www.dynomotion.com/Help/Cmd.htm#SetBitBuf
http://www.dynomotion.com/Help/Cmd.htm#SetBit
http://www.dynomotion.com/Help/Cmd.htm#ReadBit
http://www.dynomotion.com/Help/Cmd.htm#GetBitDirection
http://www.dynomotion.com/Help/Cmd.htm#DAC
http://www.dynomotion.com/Help/Cmd.htm#ClearBitBuf
http://www.dynomotion.com/Help/Cmd.htm#ClearBit
http://www.dynomotion.com/Help/Cmd.htm#ADC
http://www.dynomotion.com/Help/Cmd.htm#SetStartupThread
http://www.dynomotion.com/Help/Cmd.htm#SetStartupThread
http://www.dynomotion.com/Help/Cmd.htm#LoadData
http://www.dynomotion.com/Help/Cmd.htm#Kill
http://www.dynomotion.com/Help/Cmd.htm#Execute
http://www.dynomotion.com/Help/Cmd.htm#EntryPoint
http://www.dynomotion.com/Help/Cmd.htm#Vel
http://www.dynomotion.com/Help/Cmd.htm#StepperAmplitude
http://www.dynomotion.com/Help/Cmd.htm#StepperAmplitude
http://www.dynomotion.com/Help/Cmd.htm#Pos
http://www.dynomotion.com/Help/Cmd.htm#P
http://www.dynomotion.com/Help/Cmd.htm#OutputMode
http://www.dynomotion.com/Help/Cmd.htm#OutputChan0
http://www.dynomotion.com/Help/Cmd.htm#OutputChan0
http://www.dynomotion.com/Help/Cmd.htm#MaxOutput
http://www.dynomotion.com/Help/Cmd.htm#MaxI
http://www.dynomotion.com/Help/Cmd.htm#MaxFollowingError
http://www.dynomotion.com/Help/Cmd.htm#MaxFollowingError
http://www.dynomotion.com/Help/Cmd.htm#MaxErr
http://www.dynomotion.com/Help/Cmd.htm#LimitSwitch
http://www.dynomotion.com/Help/Cmd.htm#Lead
http://www.dynomotion.com/Help/Cmd.htm#Jerk
http://www.dynomotion.com/Help/Cmd.htm#InvDistPerCycle
http://www.dynomotion.com/Help/Cmd.htm#InputOffset0
http://www.dynomotion.com/Help/Cmd.htm#InputMode
http://www.dynomotion.com/Help/Cmd.htm#InputGain0
http://www.dynomotion.com/Help/Cmd.htm#InputChan0
http://www.dynomotion.com/Help/Cmd.htm#IIR
http://www.dynomotion.com/Help/Cmd.htm#IIR
http://www.dynomotion.com/Help/Cmd.htm#I
http://www.dynomotion.com/Help/Cmd.htm#FFVel
http://www.dynomotion.com/Help/Cmd.htm#FFAccel
http://www.dynomotion.com/Help/Cmd.htm#Dest
http://www.dynomotion.com/Help/Cmd.htm#DeadBandRange
http://www.dynomotion.com/Help/Cmd.htm#DeadBandRange
http://www.dynomotion.com/Help/Cmd.htm#DeadBandGain
http://www.dynomotion.com/Help/Cmd.htm#D
http://www.dynomotion.com/Help/Cmd.htm#CommutationOffset
http://www.dynomotion.com/Help/Cmd.htm#CommutationOffset
http://www.dynomotion.com/Help/Cmd.htm#Accel

KMotion User Manual

 FLASH
Commands
ClearFlashImage
Flash

LoadFlash<H> <N>

ProgFlashImage

Misc Commands
Echo <S>
GetPersistDec<N>

GetPersistHex<N>

GetStatus

Reboot!

SetPersistDec <O> <D>

SetPersistHex <O> <H>

Version

3PH<N>=<M> <A>

Description

Sets the assigned PWMs of an axis to the specified magnitude and phase angle for a
brushless 3 phase motor.
This command is useful for energizing a coil (or effective coil position). This is often required
while initial homing or determining the commutation offset for a 3 phase brushless motor. If
an effective coil position is energized, the motor rotor will normally align itself to the coil
position. This is similar to the manner in which a stepping motor operates. Since the rotor
location is then known, the commutation offset may then be determined. Alternately if an
index mark is available, the effective coil position may be rotated by changing the phase
angle until the index mark is detected.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Page 96 of 219

http://www.dynomotion.com/Help/Cmd.htm#Version
http://www.dynomotion.com/Help/Cmd.htm#SetPersistHex
http://www.dynomotion.com/Help/Cmd.htm#SetPersistDec
http://www.dynomotion.com/Help/Cmd.htm#Reboot!
http://www.dynomotion.com/Help/Cmd.htm#GetStatus
http://www.dynomotion.com/Help/Cmd.htm#GetPersistHex
http://www.dynomotion.com/Help/Cmd.htm#GetPersistDec
http://www.dynomotion.com/Help/Cmd.htm#Echo
http://www.dynomotion.com/Help/Cmd.htm#ProgFlashImage
http://www.dynomotion.com/Help/Cmd.htm#LoadFlash
http://www.dynomotion.com/Help/Cmd.htm#Flash
http://www.dynomotion.com/Help/Cmd.htm#ClearFlashImage

KMotion User Manual

Magnitude of output to apply.

Valid Range is -230 ... +230 PWM units

<A>

Commutation angle to be used.

Units are in Commutation cycles

Only fractional value will be used

Example

3PH0=230 0.5

4PH<N>=<M> <A>

Sets the assigned PWMs of an axis to the specified magnitude and phase angle for a
brushless 4 phase motor.
This command is useful for energizing a coil (or effective coil position). This is often required
while initial homing or determining the commutation offset for a 4 phase brushless motor. If
an effective coil position is energized, the motor rotor will normally align itself to the coil
position. This is similar to the manner in which a stepping motor operates. Since the rotor
location is then known, the commutation offset may then be determined. Alternately if an
index mark is available, the effective coil position may be rotated by changing the phase
angle until the index mark is detected.

Page 97 of 219

KMotion User Manual

Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Magnitude of output to apply.

Valid Range is -250 ... +250 PWM units

<A>

Commutation angle to be used.

Units are in Commutation cycles

Only fractional value will be used

Example

4PH0=250 0.5

Accel <N>=<A>

Page 98 of 219

KMotion User Manual

or

Accel <N>

Description

Get or Set the max acceleration (for independent moves and jogs)
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<A>

The max acceleration. Units are in Position units per sec2

Example

Accel0=1000.0

ADC<N>

Page 99 of 219

KMotion User Manual

Description

Display current ADC (Analog to Digital Converter). Display range -2048 to 2047
Channels 0-3 are ±10V general purpose inputs
Channels 4-7 are Motor Currents
Parameters
<N>

ADC channel
Valid range 0 ... 7

Example

ADC 0

Arc <XC> <YC> <RX> <RY> <θ0> <dθ> <Z0> <Z1> <a> <c> <d> <tF>

Description

Place circular (also elliptical or helical) interpolated move into the coordinated motion buffer.
See also KMotion Coordinated Motion. A path through space is defined where x and y are
changing in an elliptical manner and z is changing in a linear manner forming a portion of a
helix. A parametric equation is defined which describes which portion of the path as well as
how as a function of time the path is to be traversed.

Although the Arc command may be sent directly, the Arc command is normally generated
automatically to perform a planned trajectory by the coordinated motion library or GCode.

Page 100 of 219

http://www.dynomotion.com/Help/CoordinatedMotion.htm

KMotion User Manual

(XC,YC) - center of circle

(RX,RY) - x radius and y radius

θ0 - initial angle for the beginning of the path

dθ - amount of angular change for the path

Z0 - initial Z position of path

Z1 - final Z position of path

3rd order parametric equation where

p = a t3 + b t2 + c t + d

p is the position along the path as a function of time. When p=0 the (x,y,z) position will be at
the beginning of the path (θ= θ0 and z=z0). When p=1 the (x,y,z) position will be at the end of
the path (θ= θ0+dθ, and z=z1).

This motion segment will be performed over a time period of tF, where t varies from 0 ... tF.
Note that it is not necessary that p vary over the entire range of 0 ... 1. This is often the case
when there may be an acceleration, constant velocity, and deceleration phase phase over the
path. ie: t might vary from 0.0->0.1 where p might vary from 0.3->0.7.

Parameters
<XC> - X center of ellipse, units are position units of x axis

<YC> - Y center of ellipse, units are position units of y axis

<RX> - X radius of ellipse, units are position units of x axis

<RY> - Y radius of ellipse, units are position units of y axis

Page 101 of 219

KMotion User Manual

<θ0> - initial theta position on ellipse, radians (0 radians points in the +x direction)

<dθ> - change in theta position on ellipse, radians (+ theta causes CCW motion)
<Z0> - initial Z position on path, units are position units of z axis

<Z1> - final Z position on path, units are position units of z axis

<a> - parametric equation t3 coefficient

 - parametric equation t2 coefficient
<c> - parametric equation t coefficient
<d> - parametric equation constant coefficient
<tF> - time for segment

Example (complete unit circle, centered at 0.5,0.5, no Z motion, performed in 10
seconds)

Arc 0.5 0.5 1.0 1.0 0.0 6.28 0.0 0.0 0.0 0.0 0.1 0.0 10.0

ArcHex <XC> <YC> <RX> <RY> <θ0> <dθ> <Z0> <Z1> <a> <c> <d> <tF>

Description

Place circular (also elliptical or helical) interpolated move into the coordinated motion buffer.
This command is exactly the same as the Arc command above, except all 13 parameters are
specified as 32-bit hexadecimal values which are the binary images of 32-bit floating point
values. When generated by a program this is often faster, simpler, and more precise than
decimal values. See also KMotion Coordinated Motion.
Parameters

Page 102 of 219

http://www.dynomotion.com/Help/CoordinatedMotion.htm

KMotion User Manual

See above.

Example (complete unit circle, centered at 0.5,0.5, no Z motion, performed in 10
seconds)

Arc 3f000000 3f000000 3f800000 3f800000 0 40c8f5c3 0 0 0 0 40c8f5c3 0 41800000

CheckDone<N>

Description

Displays:

 1 if axis N has completed its motion
 0 if axis N has not completed its motion
 -1 if the axis is disabled

Parameters
<N>

Selected Axis for command. Valid range 0...7.

Example

Page 103 of 219

KMotion User Manual

CheckDone0

CheckDoneBuf

Description

Displays the status of the Coordinated Motion Buffer. KMotion contains a Coordinated
Motion Buffer where move segments (linear and arcs) and I/O commands may be
downloaded and executed in real time.

Displays:

 1 if all coordinated move segments have completed
 0 if all coordinated move segments have not completed
 -1 if any axis in the defined coordinate system is disabled
Parameters
None

Example

CheckDoneBuf

CheckDoneGather

Page 104 of 219

KMotion User Manual

Description

Displays the status of a data gather operation. KMotion contains a mechanism for capturing
data from a variety of sources in real time. This mechanism is utilized when capturing data
for Bode plots and Step response plots. It is also available for general purpose use. See the
data gathering example.

Displays:

 1 if data gather is completed
 0 if data gather has not completed
Parameters
None

Example

CheckDoneGather

CheckDoneXYZA

Description

Displays status of a commanded MoveXYZA command. See also DefineCS.

Page 105 of 219

http://www.dynomotion.com/Help/data_gathering.htm
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm
http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#Bode_plot

KMotion User Manual

Displays:

 1 if all axes in the defined coordinate system have completed their motion
 0 if any axis in the defined coordinate system has not completed its motion
 -1 if any axis in the defined coordinate system is disabled

Parameters

None

Example

CheckDoneXYZA

ClearBit<N>

Description

Clears an actual I/O bit or virtual I/O bit. Note that actual IO bits must be previously defined
as an output, see SetBitDirection
Parameters
<N>

Bit number specified as a decimal number. Valid range 0...31 for actual hardware I/O bits.
Valid range of 32...63 for virtual I/O bits.

Page 106 of 219

KMotion User Manual

Example

ClearBit0

ClearBitBuf<N>

Description

Inserts into the coordinated move buffer a command to clear an IO bit N(0..30) or a Virtual IO
bit (32..63) (actual IO bits must be defined as an output, see SetBitDirection)
Parameters
<N>

Bit Number to clear. Valid Range 0...63.

Example

ClearBitBuf0

ClearFlashImage

Page 107 of 219

KMotion User Manual

Description

Prepare to download FLASH firmware image. Sets entire RAM flash image to zero
Parameters

None.

Example

ClearFlashImage

CommutationOffset<N>=<X>

or

CommutationOffset<N>

Description

Get or Set 3 or 4 phase commutation offset. When brushless commutation is performed, the
desired Output Magnitude is distributed and applied to the various motor coils as a function of
position. The commutation offset shifts the manner in which the Output Magnitude is applied.

For a 3 phase brushless output mode, commutation offset is used in the following manner.

PhaseA = OutputMagnitude * sin((Position+CommutationOffset)*invDistPerCycle*2π)
PhaseB = OutputMagnitude * sin((Position+CommutationOffset)*invDistPerCycle*2π + 2π/3)

Page 108 of 219

KMotion User Manual

PhaseC = OutputMagnitude * sin((Position+CommutationOffset)*invDistPerCycle*2π + 4π/3)

For a 4 phase brushless output mode, commutation offset is used in the following manner.

PhaseA = OutputMagnitude * sin((Position+CommutationOffset)*invDistPerCycle*2π)
PhaseB = OutputMagnitude * cos((Position+CommutationOffset)*invDistPerCycle*2π)

See also invDistPerCycle and Configuration Parameters.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<X>

Offset in units of Position.

Example

CommutationOffset0=100.0

D<N>=<M>

Page 109 of 219

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Inv_Dist_Per_Cycle

KMotion User Manual

or

D<N>

Description

Get or Set PID derivative Gain.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Derivative Gain value. The units of the derivative gain are in Output Units/Position Units x

Servo Sample Time.

Example

D0=10.0

DAC<N> <M>

Page 110 of 219

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#Servo_Sample_Time
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#PID

KMotion User Manual

Description

DAC to value. DACs 0...3 have ±10 Volt ranges, DACs 4...7 have 0...4 Volt ranges. See
also Analog Status Screen.
Parameters
<N>

DAC channel to set. Valid Range 0...7.

<M>

DAC value to set in counts. Valid Range -2048...2047.

Example

DAC0=2000

DeadBandGain<N>=<M>

or

DeadBandGain<N>

Page 111 of 219

http://www.dynomotion.com/Help/AnalogIOScreen/AnalogIOScreen.htm#DACs

KMotion User Manual

Description

Get or Set gain while error is within the deadband range. See DeadBand Description. See
Servo Flow Diagram.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Gain to be applied. A value of 1.0 will have normal gain while within the deadband. A value

less than 1.0 will have reduced gain within the deadband.

Example

DeadBandGain0=0.5

DeadBandRange<N>=<M>

or

DeadBandRange<N>

Page 112 of 219

http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#Dead_Band

KMotion User Manual

Description

Get or Set range where deadband gain is to be applied. See DeadBand Description. See
Servo Flow Diagram.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

±Range in Position units,

Example

DeadBandRange0=1.0

DefineCS<X> <Y> <Z> <A>

or

DefineCS

Page 113 of 219

http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#Dead_Band

KMotion User Manual

Description

Set or get the defined X Y Z A coordinate system axis assignments. Unused axis are
assigned an axis channel of -1.
See also Coordinated Motion.
Parameters
<X>

Assigned Axis channel number for X. Valid range -1 ... 3.
Use -1 if axis is not defined.

<Y>

Assigned Axis channel number for Y. Valid range -1 ... 3.
Use -1 if axis is not defined.

<Z>

Assigned Axis channel number for Z. Valid range -1 ... 3.
Use -1 if axis is not defined.

<A>

Assigned Axis channel number for A. Valid range -1 ... 3.
Use -1 if axis is not defined.

Page 114 of 219

http://www.dynomotion.com/Help/CoordinatedMotion.htm

KMotion User Manual

Example

DefineCS 0 1 -1 -1

Dest<N>=<M>

or

Dest<N>

Description

Set or get the last commanded destination for an axis. The Dest (destination) is normally set
(or continuously updated) as the result of a motion command (Move, Jog, or Coordinated
motion) , but may also be set with this command if no motion is in progress.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Value to set in Position units. Valid range - any.

Page 115 of 219

KMotion User Manual

Example

Dest0=100

or

Dest0

DisableAxis<N>

Description

Kill any motion and disable motor. Any associated output PWM channels for the axis will be
set to 0R mode.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

Example

DisableAxis0

Echo <S>

Page 116 of 219

KMotion User Manual

Description

Echo character string back to the Console Screen.
Parameters
<S>

Any character string < 80 characters

Example

Echo Hello

EnableAxis<N>

Description

Set an Axis' destination to the Current Measured Position and enable the axis. See also
EnableAxisDest to explicitly set the desired destination for the axis. Note for a MicroStepper
Axis (which normally has no measured position) this command will leave the Axis' destination
unchanged. .
Parameters
<N>

Selected Axis for command. Valid range 0...7.

Page 117 of 219

http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm

KMotion User Manual

Example

Enable0

EnableAxisDest<N> <M>

Description
Set an Axis' destination to the specified position and enable the axis. See also EnableAxis to
set the desired destination to the current measured position.
<N>

Selected Axis for command. Valid range 0...7.

<M>

Destination for the axis. Position units. Valid range - any.

Example

EnableAxisDest0 1000.0

Page 118 of 219

KMotion User Manual

Enabled<N>

Description

Display whether the specified axis is enabled, 1 - if currently enabled, 0 - if not enabled.
Note: to enable an axis use EnableAxis or EnableAxisDest.

Parameters
<N>

Selected Axis for command. Valid range 0...7.

Example

Enabled0

EntryPoint<N> <H>

Description

Set execution start address of user thread to specified address. This operation if normally
performed automatically when downloading a user program.
Parameters
<N>

Page 119 of 219

KMotion User Manual

User Thread number to set. Decimal number. Valid range 1...7.

<H>

Start address. 32 bit Hex number.

Example

Entrypoint1 80030000

ExecBuf

Description

Execute the contents of the coordinated motion buffer. Use CheckDoneBuf to determine
when the buffer has been fully executed. See also Coordinated Motion.
Parameters
None

Example

ExecBuf

Page 120 of 219

http://www.dynomotion.com/Help/CoordinatedMotion.htm

KMotion User Manual

ExecTime

Description

Displays the amount of the Coordinated Motion Buffer that has been already executed in
terms of Time. KMotion contains a Coordinated Motion Buffer where move segments (linear
and arcs) and I/O commands may be downloaded and executed in real time. This command
is useful for determining how long before the Coordinated Motion Buffer will complete. For
example, if a number of segments have been downloaded where their total execution time is
10 seconds, and they are currently in progress of being executed, and the ExecTime
command reports that 8 seconds worth of segments have been executed, then the remaining
time before the queue completes (or starves for data) would be 2 seconds. This command is
useful for applications where it is important not to download data too far ahead so changes to
the Trajectory may be made. The value returned is a floating point decimal value in Seconds
with 3 decimal places. If the Coordinated Motion has already completed the amount of time
will be a negative value whose magnitude is the total time that was executed. See also
Coordinated Motion.

Displays:

 Executed time in seconds as a floating point decimal number with 3 decimal places
 ie. 10.123
 If the buffer has already completed the value will be negative
 ie. -10.123
Parameters
None

Example

Page 121 of 219

http://www.dynomotion.com/Help/CoordinatedMotion.htm

KMotion User Manual

ExecTime

Execute<N>

Description

Begin execution of thread. Execution begins at the previously specified thread entry point.
See also C Program Screen.

Parameters
<N>

Thread number to begin execution. Decimal number. Valid range 1...7.

Example

Execute1

FFAccel<N>=<M>

Page 122 of 219

http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm

KMotion User Manual

or

FFAccel<N>

Description

Set or get Acceleration feed forward for axis.
See also feed forward tuning.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Feed forward value. units are in Output units per Input Units per sec2.

Example

FFAccel0=100.0

or

FFAccel0

FFVel<N>=<M>

Page 123 of 219

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#Feed_Forward

KMotion User Manual

or

FFVel<N>

Description

Set or get Velocity feed forward for axis.
See also feed forward tuning.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Feed forward value. units are in Output units per Input Units per sec.

Example

FFVel0=100.0

or

FFVel0

Flash

Description

Page 124 of 219

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#Feed_Forward

KMotion User Manual

Flash current user programs, persistent memory area, all axes configurations, tuning, and
filter parameters to non-volatile memory. The entire state of the KMotion is saved to FLASH
memory. Any active user programs will be paused during the flash operation
Parameters

None

Example

Flash

GatherMove<N> <M> <L>

Description

Performs a profiled move on an axis of the specified distance while gathering the specified
number of points of data. This command is used while gathering data for the Step Response
Screen plots.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Page 125 of 219

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm
http://www.dynomotion.com/Help/data_gathering.htm

KMotion User Manual

Distance to move. Units are Position Units. Valid Range - any.

<L>

Number of servo samples to gather. Valid Range - 1...40000

Example

GatherMove0 1000.0 2000

GatherStep<N> <M> <L>

Description

Performs a step on an axis of the specified distance while gathering the specified number of
points of data. This command is used while gathering data for the Step Response Screen
plots.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

Page 126 of 219

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm
http://www.dynomotion.com/Help/data_gathering.htm

KMotion User Manual

<M>

Distance to step. Units are Position Units. Valid Range - any.

<L>

Number of servo samples to gather. Valid Range - 1...40000

Example

GatherStep0 1000.0 2000

GetBitDirection<N>

Description

Displays whether an IO bit N (0..30) is defined as input (0) or output (1)
Parameters
<N>

I/O bit number. Valid range 0...30

Page 127 of 219

KMotion User Manual

Example

GetBitDirection0

GetGather <N>

Description

Upload N data points from previous GatherMove or GatherStep command. Captured
commanded destination, measured position, and output are uploaded as hex values (that
represent binary images of 32-bit floating point values). Eight samples (24 values) per line.
Parameters
<N>

Number of points to upload. Valid range 1...40000.

Example

GetGather 1000

Page 128 of 219

KMotion User Manual

GetGatherDec<N>

Description

Reads a single word from the Gather Buffer at the specified offset. A single 32-bit value
displayed as a signed decimal integer number will be displayed.
Parameters
<N>

Offset into gather buffer, specified as a decimal offset of 32 bit words. Valid range
0...1999999

Example

GetGatherDec 1000

GetGatherHex<N> <M>

Description

Reads multiple words from the Gather Buffer beginning at the specified offset. Hexadecimal
values will be displayed that will represent binary images of the contents of the gather buffer
as 32 bit words.

Parameters
<N>

Page 129 of 219

http://www.dynomotion.com/Help/data_gathering.htm
http://www.dynomotion.com/Help/data_gathering.htm

KMotion User Manual

Offset into gather buffer, specified as a decimal offset of 32 bit words. Valid range
0...1999999

<M>

Number of 32 bit words to display. Decimal integer. Valid range 1...2000000

Example

GetGatherHex 0 100

GetInject<N> <M>

Description

Display results of signal injection and gathering. Bode Plot measurement involves injecting a
signal and measuring the response for each of N_CPLX (2048) samples. This command gets
the result from the injection. 3 values per sample are uploaded. Injection value, position
response (relative to destination), and servo output. All 3 values are printed as hexadecimal
values which represent the image of a 32-bit floating point value. 8 samples (24 hex values)
are printed per line.
Parameters
None

Page 130 of 219

KMotion User Manual

Example

GetInject

GetPersistDec<N>

Description

Read a single word from the Persist Array at the specified offset a single 32-bit value
displayed as a signed decimal number. The persist array is a general purpose array of
N_USER_DATA_VARS (100) 32-bit values that is accessible to the host as well as KMotion
C Programs. It may be used to share parameters, commands, or information between
programs.

C Programs may access this array as the integer array:
persist.UserData[n];

It also resides in the KMotion Persist memory structure so that if memory is flashed, the
value will be present at power up.
See also GetPersistHex, SetPersistDec, SetPersistHex
Parameters
<N>

Offset into the integer array. Valid range 0...99.

Page 131 of 219

http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm

KMotion User Manual

Example

GetPersistDec 10

GetPersistHex<N>

Description

Read a single word from the Persist Array at the specified offset a single 32-bit value
displayed as an unsigned hexadecimal number. The persist array is a general purpose
array of N_USER_DATA_VARS (100) 32-bit values that is accessible to the host as well as
KMotion C Programs. It may be used to share parameters, commands, or information
between programs.

C Programs may access this array as the integer array:
persist.UserData[n];

It also resides in the KMotion Persist memory structure so that if memory is flashed, the
value will be present at power up.
See also GetPersistDec, SetPersistDec, SetPersistHex
Parameters
<N>

Offset into the integer array. Valid range 0...99.

Example

Page 132 of 219

http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm

KMotion User Manual

GetPersistHex 10

GetStatus

Description

Upload Main Status record in hex format. KMotion provides a means of quickly uploading
the most commonly used status. This information is defined in the PC-DSP.h header file as
the MAIN_STATUS structure. The entire stucture is uploaded as a binary image represented
as 32-bit hexadecimal values.
Parameters

None

Example

GetStatus

I<N>=<M>

or

Page 133 of 219

KMotion User Manual

I<N>

Description

Get or Set PID Integral Gain.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Integral Gain value. The units of the derivative gain are in Output Units x Position Units x

Servo Sample Time.

Example

I0=10.0

or

I0

IIR<N> <M>=<A1> <A2> <B0> <B1> <B2>

or

Page 134 of 219

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#Servo_Sample_Time
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#PID

KMotion User Manual

IIR<N> <M>

Description

Set or get IIR Z domain servo filter.
See also IIR Filter Screen
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Filter number for axis. Valid range 0...2.

<A1> <A2> <B0> <B1> <B2>

Filter coefficients represented as floating point decimal values.

Example

IIR0 0=1.5 2.5 -3.5 4.5 5.5

Page 135 of 219

http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm

KMotion User Manual

or

IIR0 0

Inject<N> <F> <A>

Description

A Inject random stimulus into an axis with the specified cutoff frequency and amplitude.
Useful for generating Bode plots.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<F>

Cuttoff Frequency in Hz. Valid range - any.

<A>

Amplitude in position units. Valid range - any.

Page 136 of 219

http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#Amplitude

KMotion User Manual

Example

Inject0 100.0 20.0

InputChan<M> <N>=<C>

or

InputChan<M> <N>

Description

Get or Set the first or second Input Channel of an axis. See description of this parameter on
the Configuration Screen.
Parameters
<M>

Selected input channel. Valid range 0...1.

<N>

Selected Axis for command. Valid range 0...7.

<C>

Page 137 of 219

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Input_Channels

KMotion User Manual

Channel number to assign. Valid range 0...7.

Example (set first input channel of axis 3 to 3)

InputChan0 3=3

or

InputChan0 3

InputGain<M> <N>=<G>

or

InputGain<M> <N>

Description

Set or get first or second Input Gain of an axis. See description of this parameter on the
Configuration Screen.
Parameters
<M>

Selected input channel. Valid range 0...1.

Page 138 of 219

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Input_Channels

KMotion User Manual

<N>

Selected Axis for command. Valid range 0...7.

<C>

Input Gain. Valid range - any.

Example

InputGain0 3=1.0

InputMode<N>=<M>

or

InputMode<N>

Description

Set or get the position input mode for an axis. See description of this parameter on the
Configuration Screen.

Page 139 of 219

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Axis_Modes

KMotion User Manual

Valid modes are:
ENCODER_MODE 1

ADC_MODE 2

RESOLVER_MODE 3

USER_INPUT_MODE 4

Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Mode. Valid range 1...4

Example

SetInputMode0=1

InputOffset<M> <N>=<O>

or

InputOffset<M> <N>

Page 140 of 219

KMotion User Manual

Description

Set or get first or second Input Offset of an axis. See description of this parameter on the
Configuration Screen.
Parameters
<M>

Selected input channel. Valid range 0...1.

<N>

Selected Axis for command. Valid range 0...7.

<O>

Input Offset. Valid range - any.

Example

InputOffset0 3=0.0

Page 141 of 219

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Input_Channels

KMotion User Manual

InvDistPerCycle<N>=<X>

Description

Get or Set distance per cycle (specified as an inverse) of an axis. May specify the cycle of
either a Stepper of Brushless Motor.
See description of this parameter on the Configuration Screen.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<X>

Inverse (reciprocal) of distance for a complete cycle. Inverse position units. Should be

specified exactly or with very high precision (double precision accuracy ~ 15 digits). Valid

range - any.

Example

InvDistPerCycle0=0.05

Jerk<N>=<J>

Page 142 of 219

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Inv_Dist_Per_Cycle

KMotion User Manual

or

Jerk<N>

Description

Get or Set the max jerk (for independent moves and jogs)
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<J>

The max Jerk. Units are in Position units per sec3

Example

Jerk0=10000.0

Jog<N>=<V>

Page 143 of 219

http://www.dynomotion.com/Help/Glossary.htm#Jerk

KMotion User Manual

Description

Move at constant velocity. Uses Accel and Jerk parameters for the axis to accelerate from
the current velocity to the specified velocity. Axis should be already enabled. Specify zero
velocity to decelerate to a stop.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<V>

new Velocity in position units/second. Valid range - any.

Example

Jog0=-200.5

Kill<N>

Description

Stop execution of a user thread.
Parameters

Page 144 of 219

KMotion User Manual

<N>

Thread to halt. Valid range 1..7

Example

Kill0

Lead<N>=<M>

or

Lead<N>

Description

Set or get Lead Compensation for an axis. Lead Compensation is used to compensate for
lag caused by motor inductance.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Page 145 of 219

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Lead_Compensation

KMotion User Manual

Lead Compensation. Valid range - any.

Example

Lead0=10.0

or

Lead0

LimitSwitch<N>=<H>

Description

Configures Limit Switch Options. Specify Hex value where:

See also Configuration Screen.

Parameters
<N>

Selected Axis for command. Valid range 0...7.

<H>

Page 146 of 219

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Limit_Switch_Options

KMotion User Manual

32-bit hexadecimal value:

Bit 0 1=Stop Motor on Neg Limit, 0=Ignore Neg limit
Bit 1 1=Stop Motor on Pos Limit, 0=Ignore Pos limit
Bit 2 Neg Limit Polarity 0=stop on high, 1=stop on low
Bit 3 Pos Limit Polarity 0=stop on high, 1=stop on low
Bits 4-7 Action - 0 Kill Motor Drive
 1 Disallow drive in direction of limit
 2 Stop movement
Bits 16-23 Neg Limit Bit number
Bits 24-31 Pos Limit Bit number

Example

LimitSwitch2 0C0D0003

Linear <X0> <Y0> <Z0> <A0> <X1> <Y1> <Z1> <A1> <a> <c> <d> <tF>

Description

Place linear (in 4 dimensions) interpolated move into the coordinated motion buffer. See also
KMotion Coordinated Motion. A path through space is defined where x, y, z, and A are
changing in a linear manner. A parametric equation is defined which describes which portion
of the path as well as how as a function of time the path is to be traversed.

Although the Linear command may be sent directly, the Linear command is normally

Page 147 of 219

http://www.dynomotion.com/Help/CoordinatedMotion.htm

KMotion User Manual

generated automatically to perform a planned trajectory by the coordinated motion library or
GCode.

(X0,Y0,Z0,A0) - beginning of path

(X1,Y1,Z1,A1) - end of path

3rd order parametric equation where

p = a t3 + b t2 + c t + d

p is the position along the path as a function of time. When p=0 the (x,y,z,A) position will be at
the beginning of the path. When p=1 the (x,y,z,A) position will be at the end of the path.

This motion segment will be performed over a time period of tF, where t varies from 0 ... tF.
Note that it is not necessary that p vary over the entire range of 0 ... 1. This is often the case
when there may be an acceleration, constant velocity, and deceleration phase over the path.
ie: t might vary from 0.0->0.1 where p might vary from 0.3->0.7.

Parameters
<X0> - X begin point

<Y0> - Y begin point

<Z0> - Z begin point

<A0> - A begin point

<X0> - X end point

<Y1> - Y end point

<Z1> - Z end point

<A1> - A end point

<θ1> - initial theta position on ellipse, radians (0 radians points in the +x direction)

<a> - parametric equation t3 coefficient

Page 148 of 219

KMotion User Manual

 - parametric equation t2 coefficient
<c> - parametric equation t coefficient
<d> - parametric equation constant coefficient
<tF> - time for segment

Example

Linear 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0

LinearHex <X0> <Y0> <Z0> <A0> <X1> <Y1> <Z1> <A1> <a> <c> <d>

<tF>

Description

Place linear (in 4 dimensions) interpolated move into the coordinated motion buffer. This
command is exactly the same as the Linear command above, except all 13 parameters are
specified as 32-bit hexadecimal values which are the binary images of 32-bit floating point
values. When generated by a program this is often faster, simpler, and more precise than
decimal values. See also KMotion Coordinated Motion.
Parameters
See above.

Example

Page 149 of 219

http://www.dynomotion.com/Help/CoordinatedMotion.htm

KMotion User Manual

LinearHex 0 0 0 0 3F800000 3F800000 3F800000 3F800000 0 0 3F800000 0 3F800000

LoadData <H> <N>

 ...

Description

Store data bytes into memory beginning at specified address for N bytes. The data must
follow with up to N_BYTES_PER_LINE (64) bytes per line. This command is normally only
used by the COFF loader. Since this command spans several lines, it may only be used
programatically in conjunction with a KMotionLock or WaitToken command so that it is not
interrupted.
Parameters
<H>

32-bit hexadecimal address

<N>

Number of bytes to follow and to be stored

 ...

Page 150 of 219

http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#WaitToken
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#KMotionLock
http://www.dynomotion.com/Help/Glossary.htm#COFF

KMotion User Manual

Bytes to store. 2 hexadecimal digits per byte, separated with a space.

Example

LoadData 80030000 4

FF FF FF FF

LoadFlash<H> <N>

 ...

Description

Store data into FLASH image. Only by KMotion for downloading a new firmware version.
Store data bytes into memory beginning at specified address for N bytes. The data must
follow with up to N_BYTES_PER_LINE (64) bytes per line. This command is normally only
used by the COFF loader. Since this command spans several lines, it may only be used
programmatically in conjunction with a KMotionLock or WaitToken command so that it is not
interrupted.
Parameters
<H>

32-bit hexadecimal address

<N>

Page 151 of 219

http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#WaitToken
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#KMotionLock
http://www.dynomotion.com/Help/Glossary.htm#COFF

KMotion User Manual

Number of bytes to follow and to be stored

 ...

Bytes to store. 2 hexadecimal digits per byte, separated with a space.

Example

LoadFlash FF00 4

FF FF FF FF

MaxErr<N>=<M>

or

MaxErr<N>

Description

Set or get Maximum Error for axis (Limits magnitude of error entering PID).
See Servo Flow Diagram and Step Response Screen for more information.
Parameters

Page 152 of 219

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#max_limits
http://www.dynomotion.com/Help/ServoFlowDiagram.htm

KMotion User Manual

<N>

Selected Axis for command. Valid range 0...7.

<M>

Maximum Error. Valid range - any positive value. Set to a large value to disable.

Example

MaxErr0=100.0

or

MaxErr0

MaxFollowingError<N>=<M>

or

MaxFollowingError<N>

Description

Set or get the maximum allowed following error before disabling the axis.

Page 153 of 219

http://www.dynomotion.com/Help/Glossary.htm#Following_Error
http://www.dynomotion.com/Help/Glossary.htm#Large_Value

KMotion User Manual

Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Maximum Following Error. Valid range - any positive value. Set to a large value to disable.

Example

MaxFollowingError0=100.0

or

MaxFollowingError0

MaxI<N> <M>

Description

Set or get Maximum Integrator "wind up" for axis. Integrator saturates at the specified value.
See also Servo Flow Diagram and Step Response Screen for further information.

Parameters
<N>

Page 154 of 219

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#max_limits
http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/Glossary.htm#Large_Value

KMotion User Manual

Selected Axis for command. Valid range 0...7.

<M>

Maximum Integrator value. Valid range - any positive value. Set to a large value to disable.

Example

MaxI0=100.0

or

MaxI0

MaxOutput<N>=<M>

or

MaxOutput<N>

Description

Set or get Maximum Output for an axis. Limits magnitude of servo output. Output saturates
at the specified value.
See also Servo Flow Diagram and Step Response Screen for further information.

Parameters

Page 155 of 219

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#max_limits
http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/Glossary.htm#Large_Value

KMotion User Manual

<N>

Selected Axis for command. Valid range 0...7.

<M>

Maximum output value. Valid range - any positive value. Set to a large value to disable.

Example

MaxOutput0=100.0

or

MaxOutput

Move<N>=<M>

Description

Move axis to absolute position. Axis should be already enabled. Uses Vel, Accel and Jerk
parameters for the axis to profile a motion from the current state to the specified position.

Parameters
<N>

Selected Axis for command. Valid range 0...7.

Page 156 of 219

http://www.dynomotion.com/Help/Glossary.htm#Large_Value

KMotion User Manual

<M>

new position in position units. Valid range - any.

Example
Move0=100.1

MoveAtVel<N>=<M> <V>

Description

Move axis to absolute position at the specified Velocity. Axis should be already enabled.
Uses Accel and Jerk parameters for the axis to profile a motion from the current state to the
specified position.

Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

new position in position units. Valid range - any.

Page 157 of 219

KMotion User Manual

<V>

Desired Velocity for the Motion. Valid range - any.

Example
MoveAtVel0=100.1 30.0

MoveRel<N>=<M>

Description

Move axis relative to current destination. Same as Move command except specified motion is
relative to current destination.
Axis should be already enabled. Uses Vel, Accel and Jerk parameters for the axis to profile a
motion from the current state to the specified position.

Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Page 158 of 219

KMotion User Manual

Distance to move in position units. Valid range - any.

Example

MoveRel0=100.1

MoveRelAtVel<N>=<M> <V>

Description

Move axis relative to current destination at the specified Velocity. Same as MoveAtVel
command except specified motion is relative to current destination. Axis should be already
enabled. Uses Accel and Jerk parameters for the axis to profile a motion from the current
state to the specified position.

Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

new position in position units. Valid range - any.

Page 159 of 219

KMotion User Manual

<V>

Desired Velocity for the Motion. Valid range - any.

Example
MoveRelAtVel0=100.1 30.0

MoveXYZA <X> <Y> <Z> <A>

Description

Move the 4 axes defined to be x,y,z,A (each axis moves independently). The defined
coordinate system determines which axes channels are commanded to move.
Parameters
<X>

Position to move x axis. Valid range - any.

<Y>

Position to move x axis. Valid range - any.

<Z>

Page 160 of 219

http://www.dynomotion.com/Help/CoordinatedMotion.htm
http://www.dynomotion.com/Help/CoordinatedMotion.htm

KMotion User Manual

Position to move x axis. Valid range - any.

<A>

Position to move x axis. Valid range - any.

Example

MoveXYZA 100.1 200.2 300.3 400.4

OpenBuf

Description

Clear and open the buffer for coordinated motion.
Parameters
None

Example

OpenBuf

Page 161 of 219

http://www.dynomotion.com/Help/CoordinatedMotion.htm

KMotion User Manual

OutputChan<M> <N>=<C>

or

OutputChan<M> <N>

Description

Get or Set the first or second Output Channel of an axis. See description of this parameter
on the Configuration Screen.
Parameters
<M>

Selected input channel. Valid range 0...1.

<N>

Selected Axis for command. Valid range 0...7.

<C>

Channel number to assign. Valid range 0...7.

Example (set first output channel of axis 3 to 3)

Page 162 of 219

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Input_Channels

KMotion User Manual

OutputChan03=3

OutputMode<N>=<M>

or

OutputMode<N>

Description

Set or get the position output mode for an axis. See description of this parameter on the
Configuration Screen.

Valid modes are:
MICROSTEP_MODE 1

DC_SERVO_MODE 2

BRUSHLESS_SERVO_MODE 3

DAC_SERVO_MODE 4

Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Mode. Valid range 1...4

Page 163 of 219

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Axis_Modes

KMotion User Manual

Example
SetOutputMode0=1

P<N>=<M>

or

P<N>

Description

Get or Set PID Proportional Gain.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

Proportional Gain value. The units of the derivative gain are in Output Units/Position Units.

Example
P0=10.0

Page 164 of 219

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#PID

KMotion User Manual

Pos<N>=<P>

or

Pos<N>

Description

Set or get the measured position of an axis. Note setting the current position may effect the
commutation of any motors based on the position (an adjustment in the commutation offset
may be required).

Parameters
<N>

Selected Axis for command. Valid range 0...7.

<P>

value to be stored into the current position. units are position units. Valid range - any.

Example

Pos0=100.0

Page 165 of 219

http://www.dynomotion.com/Help/Glossary.htm#Position

KMotion User Manual

ProgFlashImage

Description

Program entire FLASH image, downloaded using LoadFlash commands, to FLASH Memory.
Parameters
None

Example

ProgFlashImage

PWM<N>=<M>

Description

Set PWM channel to locked anti-phase mode and to specified value.
See PWM Description and Analog Status Screen.
Parameters
<N>

PWM channel number. Valid range 0...7

Page 166 of 219

http://www.dynomotion.com/Help/AnalogIOScreen/AnalogIOScreen.htm#PWMs
http://www.dynomotion.com/Help/PWM_Description/PWM_Description.htm
http://www.dynomotion.com/Help/Glossary.htm#locked_anti-phase_mode

KMotion User Manual

<M>

PWM value. Valid range -255...255.

Example

PWM0=-99

PWMR<N>=<M>

Description

Set PWM channel to recirculate mode and to specified value.
See PWM Description and Analog Status Screen.
Parameters
<N>

PWM channel number. Valid range 0...7

<M>

PWM value. Valid range -511...511.

Page 167 of 219

http://www.dynomotion.com/Help/AnalogIOScreen/AnalogIOScreen.htm#PWMs
http://www.dynomotion.com/Help/PWM_Description/PWM_Description.htm
http://www.dynomotion.com/Help/Glossary.htm#recirculate_mode

KMotion User Manual

Example

PWMR0=-99

ReadBit<N>

Description

Displays whether an actual hardware I/O bit N (0...30) or Virtual IO bit (32...63) is high (1) or
low (0) . A bit defined as an output (See SetBitDirection) may also be read back.
Parameters
<N>

Bit number to read. Valid range - 0...63

Example

ReadBit0

Reboot!

Page 168 of 219

KMotion User Manual

Description

Causes complete power up reset and re-boot from flash memory.
Parameters
None

Example

Reboot!

SetBit<N>

Description

Sets an actual hardware I/O bit N (0...30) or Virtual IO bit (32...63) to high (1) .
Parameters
<N>

Bit number to set. Valid range 0...63

Example

SetBit0

Page 169 of 219

KMotion User Manual

SetBitBuf<N>

Description

Inserts into the coordinated move buffer a command to set an I/O bit N(0...30) or Virtual IO
bits (32...63) (actual IO bits must be defined as an output, see SetBitDirection)
Parameters
<N>

Bit number to set. Valid range 0...63

Example

SetBitBuf0

SetBitDirection<N>=<M>

Description

Defines the direction of an I/O bit to be an input or output.
See also Digital I/O Screen.
Parameters

Page 170 of 219

http://www.dynomotion.com/Help/DigitalIOScreen/DigitalIOScreen.htm
http://www.dynomotion.com/Help/CoordinatedMotion.htm

KMotion User Manual

<N>

Bit number to assign. Valid range 0...30

<M>

Direction 0 = input, 1 = output

Example

SetBitDirection0=1

SetGatherDec <N> <M>

Description

Writes a single word to the Gather Buffer at the specified offset. A single 32-bit value
specified as a signed decimal integer number will be stored.

The corresponding value may be accessed by a KMotion user program using the pointer :
gather_buffer. This pointer should be cast as an integer pointer in order to reference values
as integers and to use the same index.

See also GetGatherDec, GetGatherHex, SetGatherHex

Page 171 of 219

http://www.dynomotion.com/Help/data_gathering.htm

KMotion User Manual

Parameters
<N>

Offset into gather buffer, specified as a decimal offset of 32 bit words. Valid range
0...1999999

<M>

Value to be stored. Valid range -2147483648...2147483647

Example

SetGatherDec 1000 32767

SetGatherHex<N> <M>

<H> <H> <H> . . .

Description

Writes a multiple words to the Gather Buffer beginning at the specified offset. 32-bit values
specified as a unsigned hexadecimal numbers must follow with 8 words per line separated
with spaces. Since this command spans several lines, it may only be used programmatically
in conjunction with a KMotionLock or WaitToken command so that it is not interrupted.

Page 172 of 219

http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#WaitToken
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#KMotionLock
http://www.dynomotion.com/Help/data_gathering.htm

KMotion User Manual

The corresponding values may be accessed by a KMotion user program using the pointer :
gather_buffer. This pointer should be cast as an integer pointer in order to reference values
as integers and to use the same index.

See also GetGatherDec, GetGatherHex, SetGatherDec

Parameters
<N>

Offset into gather buffer, specified as a decimal offset of 32 bit words. Valid range
0...1999999

<M>

Number of value to be stored, specified as a decimal number. Valid range 0...19999999

<H> <H> <H> . . .

Values to be stored. Specified as unsigned Hexadecimal values. Valid range 0...FFFFFFFF.

Example

SetGatherHex 0 3

FFFFFFFF FFFFFFFF FFFFFFFF

Page 173 of 219

KMotion User Manual

SetPersistDec <O> <D>

Description

Write a single word into the Persistent UserData Array. Persistent UserData Array is a
general purpose array of 100 32-bit words that may be used as commands, parameters, or
flags between any host applications or KMotion user programs. The array resides in a
persistent memory area, so that if a value is set as a parameter and the User Programs are
flashed, the value will persist permanently.

The corresponding value may be accessed by a KMotion user program as the integer
variable : persist.UserData[offset].
See also GetPersistDec, GetPersistHex, SetPersistHex

Parameters

<O>

Offset into the user data array specified as a decimal number. Valid Range 0 ... 99.

<D>

Value to be written to the array. Specified a signed decimal number. Valid Range

-2147483648 ... 2147483647

Page 174 of 219

KMotion User Manual

Example

SetPersistDec 10 32767

SetPersistHex <O> <H>

Description

Write a single word into the Persistent UserData Array. Persistent UserData Array is a
general purpose array of 100 32-bit words that may be used as commands, parameters, or
flags between any host applications or KMotion user programs. The array resides in a
persistent memory area, so that if a value is set as a parameter and the User Programs are
flashed, the value will persist permanently.

The corresponding value may be accessed by a KMotion user program as the integer variable
: persist.UserData[offset].
See also GetPersistDec, GetPersistHex, SetPersistDec.

Parameters
<O>

Offset into the user data array specified as a decimal number. Valid range 0 ... 99.

<H>

Value to be written to the array. Specified an unsigned hexadecimal number. Valid range

Page 175 of 219

KMotion User Manual

0...FFFFFFFF

Example

SetPersistHex 10 FFFFFFFF

SetStartupThread<N> <M>

Description

Defines whether a user thread is to be launched on power up.
Parameters
<N>

Selected User Thread. Valid range 1...7

<M>

Mode : 1=start on boot, 0=do not start on boot.

Example

Page 176 of 219

KMotion User Manual

SetStartupThread0 1

SetStateBit<N>=<M>

Description

Sets the state of an actual hardware I/O bit N (0...30) or Virtual IO bit (32...63) to either low (0)
or high (1) . Actual I/O bits must be defined as an output, see SetBitDirection.
Parameters
<N>

Bit number to set. Valid range 0...63

<M>

State. Valid range 0...1

Example

SetStateBit0=1

Page 177 of 219

KMotion User Manual

SetStateBitBuf<N>=<M>

Description

Inserts into the coordinated move buffer a command to set the state of an I/O bit N(0...30) or
Virtual IO bits (32...63) (actual IO bits must be defined as an output, see SetBitDirection)
Parameters
<N>

Bit number to set. Valid range 0...63

<M>

State. Valid range 0...1

Example

SetBitBuf0

SetStateBitBuf0=1

StepperAmplitude<N>=<M>

or

Page 178 of 219

http://www.dynomotion.com/Help/CoordinatedMotion.htm

KMotion User Manual

StepperAmplitude<N>

Description

Set or get the nominal output magnitude used for axis if in MicroStepping Output Mode to the
specified value. This will be the output amplitude when stopped or moving slowly. If Lead
Compensation is used, the amplitude while moving may be higher.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<M>

PWM Stepper Amplitude. Valid range 0...255

Example

StepperAmplitude0=250

Vel<N>=<V>

or

Vel <N>

Page 179 of 219

KMotion User Manual

Description

Get or Set the max velocity for independent moves.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

<V>

The max velocity. Units are in Position units per sec

Example

Vel0=100.0

Version

Description

Display DSP Firmware Version and Build date in the form:.

Page 180 of 219

KMotion User Manual

KMotion 2.22 Build 22:26:57 Feb 16 2005

Note it is important that when C Programs are compiled and linked, they are linked to a
firmware file, DSP_KMotion.out, that matches the firmware in the KMotion where they will
execute.
Parameters
None

Example

Version

Zero<N>

Description

Clear the measured position of axis. Note for an axis that uses the Position to perform
brushless motor commutation, the commutation offset may be required to be adjusted
whenever the position measurement is changed.
Parameters
<N>

Selected Axis for command. Valid range 0...7.

Example

Page 181 of 219

http://www.dynomotion.com/Help/Glossary.htm#Position

KMotion User Manual

Zero0

Page 182 of 219

KMotion User Manual

Using Multiple KMotion Boards
The KMotion Driver Library allows multiple PC processes (applications), each running multiple
threads of execution, to communicate with multiple KMotion boards simultaneously. Each KMotion
board is identified by a USB location identifier where it is connected. A USB location identifier is a 32
bit integer. USB devices are arranged in a tree structure of hubs and nodes. Each hexadecimal digit of
the USB location specifies a branch in the tree structure. For the purposes of the KMotion Driver
Library, a USB location identifier may simply be considered a unique integer that will remain the same
as long as the structure of the USB tree is not altered. Adding or removing USB devices will not
change the location of a connected KMotion board.

Selecting the USB Locations menu of the KMotion Setup and Tuning application, will display a list of
all currently connected KMotion boards. The Checkmark indicates which board the application is
currently communicating with. To switch to a different board, select the USB location from the list.

Page 183 of 219

KMotion User Manual

When launching the KMotion Setup and Tuning application, a command line parameter may be
specified to connect to a specific USB location (see below on how to setup a shortcut to connect to a
specific location). Multiple shortcuts may be setup to connect to individual boards.

Page 184 of 219

KMotion User Manual

 The KMotion Driver Library has a function to list the USB locations of all currently connected
KMotion boards. See:
int ListLocations(int *nlocations, int *list);

When making KMotion Driver Library function calls specify the USB location identifier of the desired
board as the board parameter shown in the example below. Specifying a board value of 0 may be used
if there is only one board in a particular system. This will result in a connection to the first available
board.
int CKMotionDLL::WriteLineReadLine(int board, const char *s, char *response)

Page 185 of 219

http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#ListLocations

KMotion User Manual

G Code Quick
Reference
G Codes
G0 X3.5 Y5.0 Z1.0 A2.0
(Rapid move)

G1 X3.5 Y5.0 Z1.0
A2.0(linear move)

G2 X0.0 Y0.5 I0 J0.25
(CW Arc move)

G3 X0.0 Y0.5 I0 J0.25
(CCW Arc move)

G4 P0.25

(Dwell seconds)

G10L2Pn
G10L2P1X0Y0Z0

(Set Fixture Offset #n)

G20 Inch units

G21 mm units

G28 Move to Reference
Position #1

G30 Move to Reference
Position #2

G40 Tool Comp Off

G41 Tool Comp On

Left of Contour)

G42 Tool Comp On
(Right of Contour)

G43 Hn

(Tool #n length comp On)

G49 (Tool length comp
off)

Other KMotionCNC Screens
G Code Viewer Screen
G Code Viewer Setup Screen
Tool Setup Screen
see also KMotion OnLine Help

(Click on Image to Jump to related help)

 KMotionCNC allows the user to edit, execute, and view G Code
Programs. GCode is a historical language for defining
Linear/Circular/Helical Interpolated Motions often used to program
numerically controlled machines (CNC Machines).

Page 186 of 219

http://www.dynomotion.com/Help/KMOTIO~1/GViewerSetup.htm
http://www.dynomotion.com/Help/index.htm
http://www.dynomotion.com/Help/KMOTIO~1/ToolSetupScreen.htm
http://www.dynomotion.com/Help/KMOTIO~1/GCodeViewerScreen.htm

KMotion User Manual

G53 Absolute Coord

G54 Fixture Offset 1

G55 Fixture Offset 2

G56 Fixture Offset 3

G57 Fixture Offset 4

G58 Fixture Offset 5

G59 Fixture Offset 6

G59.1 Fixture Offset 7

G59.2 Fixture Offset 8

G59.3 Fixture Offset 9

G90 Absolute
Coordinates

G91 Relative Coordinates

G92 Set Global Offset
Coordinates G92 X0Y0
Z0

M Codes:
M0 (Program Stop)

M2 (Program End)

M3 Spindle CW

M4 Spindle CCW

M5 Spindle Stop

M6 Tool Change

M7 Mist On

M8 Flood On

M9 Mist/Flood Off

Other Codes:
F (Set Feed rate in/min or
mm/min)

S (Spindle Speed)

D (Tool)

See the Quick Reference at left for commonly used G
Code commands.

Display
The 4 axis Display along the top
of the screen indicated the
current position of each axis.
The units of the display are in
either mm or inches depending
on the current mode of the
interpreter (see Coordinate
System Units).
The displayed position will match

the g -code programmed position (i.e. last G1 commanded position)
which is not necessarily the actual machine tool position if global or
fixture offsets are in use.
The color of the display gives an indication of current status.

Green - indicates normal status, hardware is connected, axis is enabled,
and the displayed position in the current tool position.
White - indicates simulation mode is selected. The displayed position is
the current position after the last line of interpreted G code.
Yellow - indicates hardware disconnected or axis disabled. The
displayed position is invalid

Coordinate System Units / Mode
Displays the current mode of the G code
interpreter.

G20 selects English Inch units
G21 selects Metric mm units

Page 187 of 219

KMotion User Manual

Comments:
(Simple Comment)

(MSG,OK toContinue?)
(CMD,EnableAxis0)
(BUF,SetBitBuf29)

G90 selects Absolute Coordinates
G91 selects Relative Coordinates

Fixture Offset
Displays and allows changing of the current Fixture
Offset. KMotionCNC supports 9 Fixture offsets.
Each Fixture may be programmed to introduce an
arbitrary x,y,z,a offset. Use the G10L2Pn
command to set the offset associated with the
fixture #n. An example might be:
G10 L2 P3 X10.0 Y20.0 Z30.0 which sets Fixture
Offset #3 to (10,20,30)
Executing the command G56 (or by selecting 3 -

G56 in the drop down list) will cause Fixture offset #3 to be in use in
subsequent commands until a different Fixture is selected. (See also -
G Code Offsets).

Tool
Displays and allows changing of the currently selected
Tool. KMotionCNC supports up to 99 tool definitions.
The tool definitions are specified in a text file that is
selected on the ToolSetup Screen.
A tool definition consists of the tool number (FMS), the
pocket where it is located if there is a tool changer
available (POC), the length of the tool (LEN), the
diameter of the tool (DIAM), and an optional comment.
Executing the command D3 (or by selecting 3 in the drop
down list) will cause Tool #3 to be in use in subsequent
commands until a different Tool is selected.

See below for an example Tool Table

POC FMS LEN DIAM COMMENT

Page 188 of 219

http://www.dynomotion.com/Help/KMOTIO~1/ToolSetupScreen.htm
http://www.dynomotion.com/Help/KMOTIO~1/GCodeOffsets.htm

KMotion User Manual

1 1 0.0 0.0 first tool

2 2 0.0 0.0

3 3 1.0 0.5

4 4 2.0 1.0

32 32 0.0 0.0 last tool

File New / Open/ Save
This group of pushbuttons allow a G
Code file to be loaded or saved to or
from the edit window. The edit window

allows the user to quickly switch between 7 loaded G Code files. Once
a file is loaded into one of the edit windows, the name of that file will
persist between sessions.

Execute Controls
This group of pushbuttons allow the
control of G Code execution. Restart
will reset the instruction pointer to

the first line of the file. Execute will begin continuous execution from

where the current instruction pointer is located on the left of the edit
window. Single Step will execute one single line of G code where the
current instruction pointer is currently pointing. Note that the instruction
pointer may be moved to any line by right clicking on the line within the
edit window and selecting Set Next Statement.

Show Tool Setup / G Code Viewer Screens
This group of buttons bring additional screens into
view. The Tool Setup Screen is used to configure
the system's parameters. Machine Axis

distance/velocity/accelerations. M Code and User Button Actions
Actions, Tool and Setup definition files, and Jog Button and Joystick
rates. The G Code Viewer Screen allows real-time, 3D viewing of the
machine tool paths either during actual machine operation or during
simulation.

Page 189 of 219

http://www.dynomotion.com/Help/KMOTIO~1/GCodeViewerScreen.htm
http://www.dynomotion.com/Help/KMOTIO~1/ToolSetupScreen.htm

KMotion User Manual

G Code Edit Window

File Selector
The file selector shows which of the 7 loaded G Code files is
currently active for editing. The Main Window Title also
displays the loaded filename for the selected file. The file
number is highlighted in green when that file is currently

Page 190 of 219

KMotion User Manual

executing G Code. Only one G Code file is allowed to execute at a
particular time.

Simulate
Enables Simulation Mode which allows viewing and
verification of a G Code Program with or without any
actual hardware connected. When Simulation mode is
enabled no actual machine motion will be made.
Executing or Single Stepping through a G Code program

will change the Displayed Position and Plot the machine tool path on the
G Code Viewer Screen. In Simulation Mode the Numeric Display Color
changes to white to indicate the display is not showing the actual
machine tool position. While in Simulation mode the Jog Buttons and
Gamepad buttons will also change the displayed position and tool
position on the G Code Viewer Screen without causing any actual
machine tool motion.

Emergency Stop
Emergency Stop may be used to immediately stop all
motion. Any commands in motion will be aborted and
all axes will be disabled. After depressing Emergency
Stop the system must be re-initialized and the G Code
Interpreter state will be lost. Use Halt to stop in a

controlled manner after the next line of GCode has been completed.
The ESC key may also be use to initiate an Emergency Stop whenever
the KMotionCNC Screen has the focus.

Manual Entry

Page 191 of 219

http://www.dynomotion.com/Help/KMOTIO~1/GCodeViewerScreen.htm

KMotion User Manual

The Manual Entry cell allows the user to quickly enter a single line of G
Code and Send it to the interpreter for execution. The last 10 entered
commands are saved in a drop down list for quick re-entry.

Jog Buttons
The Jog buttons may be used to
move any of the axes. Pushing
and holding any of the buttons
will cause continuous motion.
There are 2 buttons in each
direction for each axis. The
second button moves at twice the
rate as the first. The speeds for
each axis may be specified in the
Tool Setup Screen.
A USB Gamepad such as the
one shown below may also be
used to Jog the System. Simply
connect the Gamepad and it
should become immediately
active. The left Joystick controls
x and y and the right joystick
controls z and a. The same
speed parameters in the Tool

Setup Screen control both the Jog pushbuttons on the screen and the
Gamepad.
The Jog buttons and Gamepad are also active in simulation mode

Page 192 of 219

http://www.dynomotion.com/Help/KMOTIO~1/ToolSetupScreen.htm

KMotion User Manual

Feed Rate Override
Feed Rate Override provides a means to adjust the feedrate while the

machine is in operation without having to modify
the G Code. The Feed Rate is specified within the
G Code using the F command and the Feed Rate
Override is a multiplicative factor that is applied to
that value. For example F100 would specify a
Feed rate of 100 inches/minute (or 100
mm/minute if the interpreter is in metric mm
mode), with a feed rate override of 1.5 the actual
attempted feed rate would be 150 inches/minute
(or 150 mm/minute in mm mode).
Note that this speed will only be used if all the
axes involved will remain below the maximum
allowed speeds set on the Tool Setup Screen.
Additionally, short vectors with sharp corners
(greater than the specified break angle) that
require stopping may be limited due to
acceleration limits. KMotionCNC uses complex
algorithms to ensure that velocities and
accelerations remain below user specified limits.

So if the Feed Rate Override or (Specified Feed rate itself) doesn't
seem to be having the expected result, check if the maximum velocities
and accelerations are limiting.

Page 193 of 219

http://www.dynomotion.com/Help/KMOTIO~1/ToolSetupScreen.htm

KMotion User Manual

The Feed Rate Override may be changed either by using the slider or
by typing a value and pressing the apply button.
Note that because motions are planned ahead and downloaded to the
Motion Controller ahead of time, that the feed rate override will take a
short amount of time to have an effect. The amount of time that the
trajectory planner looks ahead is specified on the Tool Setup Screen
and is normally set at from 1 to 3 seconds. The main limitation to
making this value very short is the worst case response time of
Microsoft Windows™ and the PC hardware being used.

Custom Buttons
KMotionCNC allows up to 5 Custom Buttons to be
displayed and defined for special operations.
Which of these buttons are visible, what they
display as a title, and what action they perform are
all definable on the Tool Setup Screen.
The area shown within the red rectangle is where
the Custom Buttons will appear if defined. The
actions that the buttons perform are defined in the
same manner as the actions that M Codes
perform. These may be simple actions such as

setting an Output to turn something on or may be a complex operation
that involves invoking a program. Normally one or more buttons will be
used to initialize and configure the motion controller and/or home the
machine.

Other GCode Commands
KMotion's G Code interpreter was derived from the Open Source EMC
G Code Interpreter. Click here for the EMC User Manual (Only the G
Code portions of the manual, Chapters 10-14 pertain to KMotion G
Code)
Specially coded comments embedded within a GCode program may be
used to issue KMotion Console Script commands directly to KMotion.

Page 194 of 219

http://www.dynomotion.com/Help/GCodeScreen/EMC_Handbook/node45.html
http://www.dynomotion.com/Help/KMOTIO~1/ToolSetupScreen.htm

KMotion User Manual

A comment in the form: (CMD,xxxxxx) will issue the command xxxxxx
immediately to KMotion as soon as it is encountered by the Interpreter.
Any KMotion command that does not generate a response may be
used in this manner.
A comment in the form: (BUF,xxxxxx) will place the command xxxxxx
into KMotion's coordinated motion buffer. Coordinated motion
sequences are download to a motion buffer within KMotion before they
are executed. This guarantees smooth uninterrupted motion. The BUF
command form allows a command to be inserted within the buffer so
they are executed at an exact time within the motion sequence. Only
the following KMotion Script commands may be used in this manner.
SetBitBuf, ClearBitBuf, SetStateBitBuf.
Additionally, a comment in the form: (MSG,xxxxxx) will pause GCode
Execution and display a pop-up message window displaying the
message xxxxxxx.

G Code Viewer Screen

Page 195 of 219

KMotion User Manual

The G Code Viewer Screen displays the 3D motions of the machine tool as a GCode program
is executing. To Display an entire G Code Program quickly without any physical motion of the
machine tool, select Simulate on the main KMotionCNC Screen and execute the program.
Linear and Circular Feed Motions (G1, G2, G3) are displayed as green paths. Rapid Motions
(G0) are displayed as red lines. Note that rapid motions may not actually be performed as
straight lines since during rapid motions each axis moves independently as quickly as
possible.
Click and drag the left mouse Button to translate up/down/left/right.
Click and drag the right mouse Button to translate closer or farther.
Click and drag both mouse Buttons to rotate.

Page 196 of 219

http://www.dynomotion.com/Help/KMOTIO~1/KMotionCNC.htm
http://www.dynomotion.com/Help/KMOTIO~1/KMotionCNC.htm#Simulate

KMotion User Manual

Top/Side/Front Views
Use these buttons to view directly from the Top, Side, or Front
respectively. The camera is positioned at a distance away to view

the entire box extents or current path extents whichever is greatest.

This is a latching toggle button. When latched down rotation is in the x y plane
about the z axis. When unlatched, rotation is up/down/left/right.

Clears all path vectors. As a G Code Program executes motion paths are are
saved and displayed. Pushing this button clears all vectors from the internal

buffer. All path vectors are also automatically cleared when the first line of a G Code program
executes.

These are three latching toggle buttons which determine whether
the Axis, Box, or Tool Shapes respectively are to be displayed.

When latched down the item is displayed. When latched up the item is hidden. The size and
shape of these items may be changed on the G Viewer Setup Screen.

This button brings up the G Viewer Setup Screen which allows some
customization of the G Code Viewer Screen.

G Viewer Setup Screen

Page 197 of 219

http://www.dynomotion.com/Help/KMOTIO~1/GViewerSetup.htm
http://www.dynomotion.com/Help/KMOTIO~1/GViewerSetup.htm

KMotion User Manual

The G Viewer Setup Screen sets the imaging parameters for the G Code Viewer Screen.
Besides the G code tools paths, the G Code Viewer Screen displays several objects, namely
a Tool, a Box, and an Axis Symbol. The Tool Object and Axis Symbol are 3D VRML files that
may be changed if desired. KMotionCNC comes with default files shown below.

Tool Shape
The default Tool Shape is located at: <Install Dir>\KMotion\Data\Tool.wrl,
but maybe easily changed by entering or browsing to a new file. An excellent
free program to create VRML files is available at http://www.artofillusion.org.
The default Tool file is a 1 inch diameter sphere at the end of a 1 inch

diameter cylinder which is 3 inches long. In the VRML file the origin (0,0,0) is at the center of
the sphere. The Tool Scale and offsets allow the Tool Shape to be shifted and scaled as
desired. As shown above an offset of (0,0,0.5) shifts the tool such that the origin is at the very
tip of the tool. The scale of 0.15 then reduces the tool "size" from 1 inch to 0.15 inch.

Axis Scale
The Axis file name and location is hard coded as: <Install
Dir>\KMotion\Data\Axis.wrl. The Axis shape is always drawn at the origin.
It's size may be changed by changing the Axis Scale value. If a different Axis
Shape is desired the Axis.wrl file must be overwritten with a new file.

Page 198 of 219

http://www.artofillusion.org/
http://www.dynomotion.com/Help/KMOTIO~1/GCodeViewerScreen.htm

KMotion User Manual

Box
The Box serves two purposes. If enabled for display, it aids the 3D
visualization and perspective of the tool paths. It is also expected to
represent the working extents of the machine. When "zooming out" to one
of the preset Top, Side, or Front Views, it is used to frame the view
extents. Therefore the Box Size parameters should be set to the working

extents of the machine. With an offset of 0,0,0 the origin will be located at the center of the
Box. This is the preferred arrangement, however if required the Box may be displayed offset
by entering Box Offset values other than zero

Tool Setup Screen

Page 199 of 219

KMotion User Manual

(Click on Image to Jump to related help)
The Tool Setup Screen allows KMotionCNC to be configured for a particular machine tool.
Each machine tool is likely to have different motion resolution, speeds, and acceleration
limits. It is also likely to different I/O requirements with regard to Spindle control and such.
Additionally a machine may have different initialization and homing requirements.
KMotionCNC has a flexible mechanism for defining what type of action is to be performed for
various M Codes and Custom Buttons.

Tool Table File

Page 200 of 219

KMotion User Manual

The Tool Table File specifies the disk text file which contains the table of tool definitions. In
some cases the G Code Interpreter needs to know the length and diameter of the selected
tool for tool path compensation. This file is used to define up to 99 tools. See also Selecting
Tools.
See below for an example Tool Table

POC FMS LEN DIAM COMMENT

1 1 0.0 0.0 first tool

2 2 0.0 0.0

3 3 1.0 0.5

4 4 2.0 1.0

32 32 0.0 0.0 last tool

Page 201 of 219

http://www.dynomotion.com/Help/KMOTIO~1/KMotionCNC.htm#Tool
http://www.dynomotion.com/Help/KMOTIO~1/KMotionCNC.htm#Tool

KMotion User Manual

Setup File

The Setup File specifies the disk text file which contains the setup table for the G Code
Interpreter. In some machine tools the Interpreter may require a special initialization state.
Below is the default Setup file. Modifications to the setup file should not normally be required.
Attribute Value Other Possible Values

axis_offset_x 0.0 any real number
axis_offset_y 0.0 any real number
axis_offset_z 0.0 any real number
block_delete ON OFF
current_x 0.0 any real number
current_y 0.0 any real number
current_z 0.0 any real number
cutter_radius_comp OFF LEFT, RIGHT
cycle_r 0.0 any real number
cycle_z 0.0 any real number not less than cycle_r
distance_mode ABSOLUTE INCREMENTAL
feed_mode PER_MINUTE INVERSE_TIME
feed_rate 5.0 any positive real number
flood OFF ON
length_units MILLIMETERS INCHES
mist OFF ON
motion_mode 80 0,1,2,3,81,82,83,84,85,86,97,88,89
plane XY YZ, ZX
slot_for_length_offset 1 any unsigned integer less than 69
slot_for_radius_comp 1 any unsigned integer less than 69
slot_in_use 1 any unsigned integer less than 69
slot_selected 1 any unsigned integer less than 69
speed_feed_mode INDEPENDENT SYNCHED
spindle_speed 1000.0 any non-negative real number
spindle_turning STOPPED CLOCKWISE, COUNTERCLOCKWISE
tool_length_offset 0.0 any non-negative real number
traverse_rate 199.0 any positive real number

Page 202 of 219

KMotion User Manual

Axis Motion Parameters

The Axis Motion Parameters define the scale, maximum feed velocities, and maximum feed
accelerations for each of the four axis.
The first parameter is the axis's scale in counts/inch. For the example value of 100 shown,
KMotionCNC will command the motion controller to move 100 counts for each inch of motion
in the G Code Program. This value is always in counts/inch regardless of the units used in
the interpreter. KMotionCNC will automatically perform any conversions.
The second parameter is the maximum allowed feed rate for the axis in inches/sec. Note that
the G Code Interpreter Feed Rate is defined in inches per minute or (mm per minute) so be
aware of the different time units. These are maximum feed rates for each axis. If a vector
tool motion at a particular feed rate has any component velocity that exceeds the
corresponding axis's maximum velocity, the feed rate for the vector will be reduced so that all
axes remain at or below their maximum allowed velocity.

The third parameter is the maximum allowed acceleration for the axis in inches/sec2. The G
Code Language has no provisions for specifying acceleration rates. Therefore the
acceleration (and deceleration) along a vector used will always be the largest acceleration
such that each axis's acceleration is at or below the specified limit.
The velocity and acceleration limits apply only to linear and circular feed motions (G1, G2,
G3). Rapid motions (G0) use the settings in the motion controller (velocity, acceleration, and
Jerk) to move each axis independently from one point to another (which is likely not to be a
straight line). To change the speed of Rapid motions change the configuration settings in the
motion controller.

Page 203 of 219

KMotion User Manual

Trajectory Planner

KMotionCNC contains a powerful Trajectory Planner. The Trajectory Planner utilizes a "break
angle" concept to decide when a stop must be made. Vectors that are in the same direction
within the "break angle" are traversed without stopping. When a "sharp" angle is detected a
complete stop will be made before beginning on the next vector. The Break Angle Parameter
allows the user to specify the angle in degrees that will be considered a "sharp" angle.
KMotionCNC considers the change in direction in 3 dimensions (x,y,z ignoring a). The
Trajectory Planner is capable of optimizing the acceleration and deceleration through many
short (or long) vectors all of which may have different acceleration and velocity limitations.
The Trajectory Planner also has a "lookahead" parameter. With KMotionCNC the G Code
Program itself, the G Code Interpreter, and the Trajectory Planner all reside within the PC
running Microsoft Windows™. Since the Microsoft Windows™ is not a real-time OS, a certain
amount of motion must be buffered in the motion controller to handle the cases where the PC
program doesn't have a chance to execute for a while. These time periods are typically very
short (a few milliseconds), but in some extreme cases may occasionally be as long as one or
several seconds. The worst case is often a factor of the hardware (disk network adapters,
etc) and associated drivers that are loaded into the system. The lookahead parameter is
used to determine how much motion, in terms of time, should be downloaded to the motion
controller before actual motion is initiated. Furthermore, after motion has begun, the
lookahead parameter is used to pause the trajectory planner to avoid having the Trajectory
Planner get too far ahead of the actual motion. The disadvantage of having the Trajectory
Planner get too far ahead is that if the User decides to override the feed rate, since the motion
has already been planned and downloaded, the rate will not be changed quickly. A value of 3
seconds is very conservative on most systems. If more responsive feed rate override is
desirable, an experiment with a smaller value might be made.

Page 204 of 219

KMotion User Manual

G Code Actions

 The G Code Actions section of the Tool Setup Screen defines what action is to be performed
when a particular G Code Command (Mostly M Codes) is encountered. The Action that can
be performed can be one of several things:

• None
• Set or Reset one I/O Bit
• Set or Reset two I/O Bits
• Set a DAC to a variable's value
• Execute a C Program in the KMotion Control Board

To specify a particular action first select the Action Type. Each Action Type requires a
different number and type of parameters. Next fill in the appropriate parameters. The one
and two bit I/O commands are inserted directly into the coordinated motion control buffer. In
this way they are exactly synchronized with any motion before or after the I/O commands.
This is useful in systems where a fast shutter or other operation is required at precise times
relative to the motion.
The four Action Types are described below:

For one I/O bit specify the I/O bit number and the state 0 or 1 to set it to.

For two I/O bits specify the I/O bit numbers and the state 0 or 1 to set each to. Often systems
with two direction spindle control will require setting two outputs that control on/off and
cw/ccw. This command is designed to handle those situations.

Page 205 of 219

KMotion User Manual

For DAC specify the DAC (Digital to analog converter) channel number, how to scale and
offset the associated variable, and the minimum and maximum allowed DAC settings. This
command is primarily designed for use with the S (Spindle speed) G Code Command

For Execute Prog specify the program Thread (1 through 7) where the program is to be
downloaded and executed, a Persist Variable (1-99) that will be set before the program
executes, and the name of the C Program to be Compiled, Downloaded, And Executed. If the
Filename is left blank, then it will be assumed that a program has been previously
downloaded and will just be re-executed. This method is very powerful in that anything that
may be programmed in C may be invoked. See the KMotion documentation for information
on writing C Programs for the KMotion Motion Control Board. There are a number of example
C programs in the <Install Dir>\C Programs folder. The Example "Setup Gcode 4 axis.c" s
an example which completely configures all necessary parameters on the KMotion Board to
drive 4 stepping motors.

Custom Buttons

Custom Button Actions function in exactly the same manner as the G Code Actions described
above with the only difference being that they are invoked by the User pushing a button rather
than by a command encountered within a G Code Program. There is an additional
Parameter on the very left of the Action Type which is the Title to be placed on the Custom
Button. The example above shows two buttons defined with titles "INIT" and "HOME". Up to
5 buttons may be defined. Common uses for the Buttons are to invoke programs that
initialize and/or home the machine. Any Button with an empty title field will cause the button
to be hidden on the main KMotionCNC screen. See here for how these defined buttons will
appear in the main KMotionCNC Screen.

Page 206 of 219

http://www.dynomotion.com/Help/KMOTIO~1/KMotionCNC.htm#Custom_Buttons

KMotion User Manual

Jog Speeds

Defines the Jog Speeds for both the Jog Buttons and any attached Gamepad controller.
These speed are the maximum Jog speed which is the double arrow jog button or the
GamePad joystick fully depressed. See Also Jog Buttons.

G Code Offsets

KMotionCNC supports G Code Fixture Offsets (G54 through G59.9) as well as a Global
Offset (G92). So there are two methods that may be used to offset a G Code Program. Both
may be used concurrently.
The following formula is used:
Tool Position = Programmed Position + Currently Selected Fixture Offset + Global Offset
Fixture Offsets are specified in a straightforward manner by using the G10 L2 Pn command to
specify the value of the offset. The system has memory to remember 9 fixture offsets. Any of
the fixture offsets may then be selected for use using the G54 - G59.9 commands. One and
only one fixture offset is always in use (one exception to this is a line containing the G53
command, which temporarily causes no offsets whatsoever to be used for that one line only).
The Global Offset is specified in an indirect manner by using the G92 command to declare the
current tool position to be a specified programmed position. The specified position may be
zero or any location. For example, if it is known that a particular G Code program expects a
particular location on the part to be (-1,-1,-1), then the tool could be physically moved to that
point on the part and the command:
G92 X-1 Y-1 Z-1
could be entered. The system will then automatically calculate the appropriate Global Offset
to make the current programmed position (-1,-1,-1). No physical motion will occur. The
Displayed Position will change to the position specified (-1,-1,-1). Any current Fixture Offset
will be taken into consideration as well

Page 207 of 219

http://www.dynomotion.com/Help/KMOTIO~1/KMotionCNC.htm#Jog_Buttons

KMotion User Manual

Example:
Consider the program shown below. Initially there are no offsets.

After line N1 is executed,
Tool Position (-0.1,-0.2,-0.3) = Programmed Position (-0.1,-0.2,-0.3) + Fixture Offset (0,0,0)
+ Global Offset (0,0,0)

After line N2 is executed, no physical motion occurs but a Global Offset of (-0.1,-0.2,-0.3) is
calculated and:
Tool Position (-0.1,-0.2,-0.3) = Programmed Position(0,0,0) + Fixture Offset (0,0,0) + Global
Offset (-0.1,-0.2,-0.3)

After line N3 movement to programmed position of (1,2,3) occurs and:
Tool Position (0.9,1.8,2.7) = Programmed Position(1,2,3) + Fixture Offset (0,0,0) + Global
Offset (-0.1,-0.2,-0.3)

After lines N3 and N4 specify a fixture offset and select it for use, no motion occurs but the
program (displayed) position changes to:
Tool Position (0.9,1.8,2.7) = Programmed Position(0.5,1.3,2.1) + Fixture Offset (0.5,0.7,0.9)
+ Global Offset (-0.1,-0.2,-0.3)

After line N5 is executed motion to programmed position (1,1,1) occurs and:
Tool Position (1.4,1.5,1.6) = Programmed Position(1,1,1) + Fixture Offset (0.5,0.7,0.9) +
Global Offset (-0.1,-0.2,-0.3)

N1 G00 X-0.1 Y-0.2 Z-0.3 (move somewhere)
N2 G92 X0 Y0 Z0 (declare where we are to be zero)
N3 G00 X1 Y2 Z3

N4 G10 L2 P2 X0.5 Y0.7 Z0.9 (Set G55 - fixture offset #2)
N5 G55 (Set to use fixture offset #2)
N6 G00 X1 Y1 Z1

N7 G53 X0 Y0 Z0

Page 208 of 219

KMotion User Manual

SnapAmp - Connector Pinouts

SnapAmp contains three connectors labeled JP1, JP6, and JP7.

JP6 - KMotion Communication & Logic Power

JP6 is a proprietary high-speed communication bus where command and status communication
between the KMotion board and the SnapAmp Amplifier. Up to two SnapAmps may be attached to a
single KMotion Board. The second of the two SnapAmps must have a configuration jumper installed
into JP5.

This connection is required for proper operation of the SnapAmp and should be as short as possible.

16 pin ribbon cable connection between SnapAmp and KMotion.

Note: 4 - 40 x 1 3/8 inch standoffs are used between SnapAmp (top) and KMotion (bottom).

Page 209 of 219

KMotion User Manual

16 pin ribbon cable connection between Dual SnapAmps and KMotion

Notes:

4 - 40 x 1 3/8 inch standoffs are used between SnapAmp and KMotion

4 - 40 x 1 5/8 inch standoffs are used between SnapAmps

JP5 Jumper installed configures a SnapAmp as the 2nd SnapAmp.

Page 210 of 219

KMotion User Manual

When attaching SnapAmp to the KMotion first attach main ground plug as shown.

Page 211 of 219

KMotion User Manual

For Dual Snap Amp systems attach the 1:2 spade Y adapter before connecting the first SnapAmp

JP7 - I/O - General Purpose LVTTL - OPTO Isolated - Differential - Encoder Inputs

JP7 Is used for all Digital I/O. Fourteen General Purpose LVTTL I/O, Eight Differential Encoder
Inputs, and Eight Optically Isolated Inputs.

Page 212 of 219

KMotion User Manual

Page 213 of 219

KMotion User Manual

Page 214 of 219

KMotion User Manual

Optically isolated input circuit. 5-12V may be applied. Current requirements at 5V is approximately
6ma and at 12V is approximately 20ma.

Pin Name Description
1 GPIO0 Gen Purpose LVTTL
2 GPIO1 Gen Purpose LVTTL
3 GPIO2 Gen Purpose LVTTL
4 GPIO3 Gen Purpose LVTTL
5 GPIO4 Gen Purpose LVTTL
6 GPIO5 Gen Purpose LVTTL
7 GPIO6 Gen Purpose LVTTL
8 GPIO7 Gen Purpose LVTTL
9 GPIO8 Gen Purpose LVTTL
10 GPIO9 Gen Purpose LVTTL
11 GPIO10 Gen Purpose LVTTL
12 GPIO11 Gen Purpose LVTTL
13 GPIO12 Gen Purpose LVTTL
14 GPIO13 Gen Purpose LVTTL

15 CHA DIFF
PLUS 0

Differential Input + Encoder
0 Input Phase A

16 CHA DIFF
MINUS 0

Differential Input - Encoder
0 Input Phase A

17 CHB DIFF
PLUS 0

Differential Input + Encoder
0 Input Phase B

Page 215 of 219

KMotion User Manual

18 CHB DIFF
MINUS 0

Differential Input - Encoder
0 Input Phase B

19 CHA DIFF
PLUS 1

Differential Input + Encoder
1 Input Phase A

20 CHA DIFF
MINUS 1

Differential Input - Encoder
1 Input Phase A

21 CHB DIFF
PLUS 1

Differential Input + Encoder
1 Input Phase B

22 CHB DIFF
MINUS 1

Differential Input - Encoder
1 Input Phase B

23 CHA DIFF
PLUS 2

Differential Input + Encoder
2 Input Phase A

24 CHA DIFF
MINUS 2

Differential Input - Encoder
2 Input Phase A

25 CHB DIFF
PLUS 2

Differential Input + Encoder
2 Input Phase B

26 CHB DIFF
MINUS 2

Differential Input - Encoder
2 Input Phase B

27 CHA DIFF
PLUS 3

Differential Input + Encoder
3 Input Phase A

28 CHA DIFF
MINUS 3

Differential Input - Encoder
3 Input Phase A

29 CHB DIFF
PLUS 3

Differential Input + Encoder
3 Input Phase B

30 CHB DIFF
MINUS 3

Differential Input - Encoder
3 Input Phase B

31 OPTO NEG
0

Opto Isolated Input 0
Negative Connection

32 OPTO POS
0

Opto Isolated Input 0
Positive Connection

33 OPTO NEG
1

Opto Isolated Input 1
Negative Connection

34 OPTO POS
1

Opto Isolated Input 1
Positive Connection

35 OPTO NEG
2

Opto Isolated Input 2
Negative Connection

36 OPTO POS
2

Opto Isolated Input 2
Positive Connection

Page 216 of 219

KMotion User Manual

37 OPTO NEG
3

Opto Isolated Input 3
Negative Connection

38 OPTO POS
3

Opto Isolated Input 3
Positive Connection

39 OPTO NEG
4

Opto Isolated Input 4
Negative Connection

40 OPTO POS
4

Opto Isolated Input 4
Positive Connection

41 OPTO NEG
5

Opto Isolated Input 5
Negative Connection

42 OPTO POS
5

Opto Isolated Input 5
Positive Connection

43 OPTO NEG
6

Opto Isolated Input 6
Negative Connection

44 OPTO POS
6

Opto Isolated Input 6
Positive Connection

45 OPTO NEG
7

Opto Isolated Input 7
Negative Connection

46 OPTO POS
7

Opto Isolated Input 7
Positive Connection

47 VDD5 + 5V Encoder Power Output
48 VDD5 + 5V Encoder Power Output
49 GND Digital Logic Ground
50 GND Digital Logic Ground

Page 217 of 219

KMotion User Manual

JP1 - Motor/Motor Supply (10-80V) Connector

 Motor type DC -Brush Motor type - 3 Phase brushless Motor type - Stepper

Axis
0

Connect Motor across
OUT0-OUT1

Specify PWM Channel 8

Connect Phase A to OUT0
Connect Phase B to OUT1
Connect Phase C to OUT2
Leave OUT3 disconnected
Specify PWM Channel = 8

Connect Coil A across OUT0-OUT1
Connect Coil B across OUT2-OUT3
Specify PWM Channels = 8 and 9

Axis
1

Connect Motor across
OUT2-OUT3

Specify PWM Channel 9

Axis
2

Connect Motor across
OUT4-OUT5

Specify PWM Channel
10

Connect Phase A to OUT4
Connect Phase B to OUT5
Connect Phase C to OUT6
Leave OUT7 disconnected
Specify PWM Channel 10

Connect Coil A across OUT4-OUT5
Connect Coil B across OUT6-OUT7
Specify PWM Channels= 10 and 11

Axis
3

Connect Motor across
OUT6-OUT7

Specify PWM Channel

Page 218 of 219

KMotion User Manual

11

Page 219 of 219

	ADC's

