
KFLOP User Manual 2016

1 | P a g e

Table of Contents

KMotion/KFLOP Executive Software Screens

Bode Plot Screen Page 4 GCode Screen Page 13

C Program Screen Page 15 IIR Filter Screen Page 19

Configuration/ FLASH Screen Page 25 Step Response Screen Page 37

Console Screen Page 46 Axis Screen Page 48

KFLOP Board specific

Summary Page 49 Quick Start/USB Driver Installation Page 50

HW/SW Specification Page 51 Board Layout Page 59

Block Diagram Page 61 Hardware/Connector Description Page 62

Analog IO Screen Page 72 Digital IO Screen Page 75

Functional Diagram

Page 80 Virtual COM Port Driver

Installation

Page 81

General

Servo Flow Diagram Page 97 Driver Library Routines Page 98

Script Commands Page 110 Driver Library Flow Diagram Page 192

Using Multiple Boards Page 193 Preemptive Multi-tasking Page 195

http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm
http://www.dynomotion.com/Help/GCodeScreen/GCodeScreen.htm
http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm
http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm
http://www.dynomotion.com/Help/AxisScreen/AxisScreen.htm
http://www.dynomotion.com/Help/SummaryKFLOP.htm
http://www.dynomotion.com/Help/KFLOPQuickStart/KFLOPQuickStart.htm
http://www.dynomotion.com/Help/KFLOPQuickStart/KFLOPQuickStart.htm
http://www.dynomotion.com/Help/SpecificationKFLOP.htm
http://www.dynomotion.com/Help/SchematicsKFLOP/LayoutKFLOP.htm
http://www.dynomotion.com/Help/BlockDiagramKFLOP.htm
http://www.dynomotion.com/Help/AnalogIOScreenKFLOP/AnalogIOScreen.htm
http://www.dynomotion.com/Help/DigitalIOScreenKFLOP/DigitalIOScreen.htm
http://www.dynomotion.com/Help/SchematicsKFLOP/KFLOPFunctionalDiagram.htm
http://dynomotion.com/Help/VirtualComPortwithKFLOP.pdf
http://dynomotion.com/Help/VirtualComPortwithKFLOP.pdf
http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm
http://www.dynomotion.com/Help/CmdsCategory.htm
http://www.dynomotion.com/Help/LibrariesFlowDiagram.PNG
http://www.dynomotion.com/Help/MultipleBoards.htm
http://www.dynomotion.com/Help/Multitasking.htm

KFLOP User Manual 2016

2 | P a g e

RS232/UART Page 197 .NET INterface

KMotionCNC

KMotionCNC Page 200 G Code Viewer Screen Page 215

G Code Viewer Setup Screen Page 217 Tool Setup Screen Page 219

TP Corner Rounding
Page 244 Control KMotionCNC from

KFLOP

Page 254

MCodes with Parameters Page 257 Geo Correction Table Page 258

Embedded/Buffered IO

Commands

Page 260

Spindle Control

Page 267

Fiducial Alignment Page 277

Mach 3

Mach3 Plugin Page 280 Mach3 Encoder Setup Page 292

Mach3 G31 Probe Setup Page 299 Passing DROs Page 303

Mach3 Rigid Tapping Page 304

KStep

Specification Page 309 KStep Hardware/Connectors Page 310

Block Diagram of KSTEP Page 322 Board Layout Page 323

KStep Use and Settings Page 324 KStep Basics Tutorial Page 336

Kanalog

Specification Page 361 Kanalog Hardware/Connectors Page 362

Block Diagram Page 371 Board Layout Page 372

Kanalog Use and Settings Page 374

Konnect

Specification Page 378 Konnect Hardware/Connectors Page 379

Block Diagram Page 387 Board Layout Page 388

http://www.dynomotion.com/Help/RS232/RS232.htm
http://dynomotion.com/KMotion_dotNet/Docs/Help/KMotion.Net.chm
http://www.dynomotion.com/Help/KMotionCNC/KMotionCNC.htm
http://dynomotion.com/Help/KMotionCNC/GCodeViewerScreen.htm
http://dynomotion.com/Help/KMotionCNC/GViewerSetup.htm
http://dynomotion.com/Help/KMotionCNC/ToolSetupScreenM3.htm
http://dynomotion.com/Help/KMotionCNC/TrajectoryPlanner.htm
http://dynomotion.com/Help/KMotionCNC/KMotionCNCCmdsFrKFLOP.htm
http://dynomotion.com/Help/KMotionCNC/KMotionCNCCmdsFrKFLOP.htm
http://dynomotion.com/Help/KMotionCNC/MCodesWithParams.htm
http://dynomotion.com/Help/KMotionCNC/GeoCorrection.htm
http://dynomotion.com/Help/KMotionCNC/SynchronousIOCommands.htm
http://dynomotion.com/Help/KMotionCNC/SynchronousIOCommands.htm
http://dynomotion.com/Help/KMotionCNC/SpindleControl.htm
http://dynomotion.com/Help/KMotionCNC/FiducialAlignment.htm
http://www.dynomotion.com/Help/Mach3Plugin/Mach3.htm
http://dynomotion.com/Help/Mach3Plugin/Mach3Encoders.htm
http://dynomotion.com/Help/Mach3Plugin/Mach3Probe.htm
http://dynomotion.com/Help/Mach3Plugin/Mach3DROs.htm
http://dynomotion.com/Help/Mach3Plugin/Mach3RigidTapping.htm
http://dynomotion.com/Help/SpecificationKStep.htm
http://dynomotion.com/Help/SchematicsKStep/ConnectorsKStep.htm
http://dynomotion.com/Help/BlockDiagramKStep.htm
http://dynomotion.com/Help/SchematicsKStep/LayoutKStep.htm
http://dynomotion.com/Help/SchematicsKStep/UsingKStep.htm
http://dynomotion.com/Help/KSTEP_Basics_Tutorial.html
http://www.dynomotion.com/Help/SpecificationKanalog.htm
http://www.dynomotion.com/Help/SchematicsKanalog/ConnectorsKanalog.htm
http://www.dynomotion.com/Help/BlockDiagramKanalog.htm
http://www.dynomotion.com/Help/SchematicsKanalog/LayoutKanalog.htm
http://www.dynomotion.com/Help/SchematicsKanalog/UsingKanalog.htm
http://dynomotion.com/Help/SchematicsKonnect/SpecificationKonnect.htm
http://dynomotion.com/Help/SchematicsKonnect/ConnectorsKonnect.htm
http://dynomotion.com/Help/BlockDiagramKonnect.htm
http://dynomotion.com/Help/SchematicsKonnect/LayoutKonnect.htm

KFLOP User Manual 2016

3 | P a g e

Software PWM to Analog

Example

Page 389

SnapAmp

SnapAmp Use and Settings Page 396 SnapAmp Hardware/Connectors Page 400

SnapAmp Plotting Example Page 407

Examples

Step/Direction Output Mode Page 414 Brush Motor/SnapAmp Example Page 425

Closed Loop Step/Dir Output

Mode

Page 440

Resolver as User Input Mode

Page 447

Data Gather Example Page 458

Videos

Step and Direction Page 459 Brush Motor with SnapAmp Page 459

Resolver with KMotion Page 459 Nonlinear Kinematics Page 459

IR Remote Control Page 459 How Parameters can be Set Page 459

Forum/Support

Dynomotion Yahoo Group

Page 459 CNCzone Forum

Page 459

Copyright © 2005 - 2016 [DynoMotion]. All rights reserved.

Revised: 09/15/2016 V 3.02.

http://dynomotion.com/Help/SchematicsKonnect/PWMtoAnalog.htm
http://dynomotion.com/Help/SchematicsKonnect/PWMtoAnalog.htm
http://www.dynomotion.com/Help/SchematicsSnap/UsingSnapAmp.htm
http://www.dynomotion.com/Help/SchematicsSnap/SnapAmpConnectors.htm
http://www.dynomotion.com/Help/SchematicsSnap/SnapAmpTutorial.htm
http://www.dynomotion.com/Help/StepAndDirection/StepAndDir.htm
http://www.dynomotion.com/Help/ExampleConfigurations/BrushServoSnapAmp.htm
http://www.dynomotion.com/Help/ClosedLoopStep/ClosedLoopStepper.htm
http://www.dynomotion.com/Help/ClosedLoopStep/ClosedLoopStepper.htm
http://www.dynomotion.com/Help/Resolver/Resolver.htm
http://www.dynomotion.com/Help/data_gathering.htm
http://dynomotion.com/Videos/StepAndDir.wmv
http://dynomotion.com/Videos/DCBrush.wmv
http://dynomotion.com/Videos/Resolver.wmv
http://dynomotion.com/Videos/Gizmo.wmv
http://dynomotion.com/Videos/RemoteControl.wmv
http://www.dynomotion.com/Help/FlashHelp/Parameters/index.html
http://tech.groups.yahoo.com/group/DynoMotion
http://www.cnczone.com/forums/dynomotion-kflop-kanalog/

KFLOP User Manual 2016

4 | P a g e

Bode Plot Screen

The Bode Plot Screen allows the measurement of a servo loop and graphs the open loop
response. A Bode Plot is by far the most common means used to measure and understand the
behavior of a control loop. KMotion contains advanced built-in features to allow rapid Bode Plot
measurement and display. The current PID and IIR Filter transfer functions may also be
superimposed and graphed.

A Bode Plot is a plot of magnitude and phase of a system with respect to frequency. Any linear
system that is driven by a sinusoidal input for a long time, will output an sinusoidal signal of the
same frequency. The output signal may be shifted in phase and of a different magnitude than the
input. A Bode plot is a graph of both the change in phase and the relative change in magnitude
(expressed in decibels, db), as a function of frequency.

A Bode plot is a useful tool used to examine the stability of a servo feedback loop. If a system has
an open loop gain of -1 (magnitude of 0 db and phase of -180 degrees), then if it is placed into a
negative feedback loop, it will become unstable and oscillate. Because a system's gain and phase
vary as function of frequency, if the system has a magnitude of 0db and phase of -180 degrees at
any frequency it will be unstable and oscillate at that frequency. The way to avoid an unstable
system is to avoid having simultaneous conditions of 0db and -180 degrees occur at any frequency.
Where the magnitude of the system is 0db the amount that the phase is different from -180 degrees

KFLOP User Manual 2016

5 | P a g e

is called the phase margin. The larger the phase margin the more stable the system. Similarly
where the phase is -180 degrees the amount that the magnitude is different from 0db is called the
gain margin. Again the larger the gain margin, the more stable the system. As a general rule of
thumb, for a system to be reasonably stable it should have a phase margin of at least 30 degrees
and a gain margin of at least 3 db.

The Bode Plot Screen attempts to identify and measure the 0 db crossover frequency (the first point
where the open loop magnitude becomes less than 1, often defined as the system bandwidth, 228
Hz on the example above), the gain and phase margins, and one or two sharp peaks in the
magnitude data after the crossover. Some mechanical systems have sharp resonant peaks that
may cause the system to go unstable if these peaks approach the 0 db line and have phase near -
180 degrees. A notch filter placed at these frequencies may increase performance. The
measurements are displayed under the graph as shown below.

The most direct method for obtaining the open
loop response is to break the servo loop open,
inject a signal into the system and measure
the output. However, this is usually impractical
as most systems will run out of their linear
range if driven in an open loop manner.
KMotion operates the servo loop in its normal
closed loop form, injects a command signal,
measures the position response, and
mathematically derives the open loop
response. This does require that the servo
loop function in some form as a stable closed
loop servo before a measurement may be
made. Performance is not a requirement so
low gains might be used to obtain an initial
stable system.

KFLOP User Manual 2016

6 | P a g e

To perform a Bode Plot Measurement: select the channel to
measure, select the desired Amplitude and Cutoff Frequency for the
stimulus to be injected, select the # of samples to average, and
depress the Measure Pushbutton. All current Configuration
Parameters (from the Configuration Screen), Tuning Parameters
(from the Step Response Screen), and Filter Parameters (from the
IIR Filter Screen) will be downloaded, the selected Axis channel will
be enabled, and the measurement will begin.

While the measurement is in progress the number of samples
acquired will be displayed and the Measure Pushbutton will change
to a Stop Pushbutton. Pushing the Stop button will stop acquiring
data after the current sample is complete.

Depending on the type of plot requested (either Time Domain or
Frequency Domain) either the last acquired time domain measurement will be displayed or the
average all the frequency domain measurement so far acquired will be displayed.

Unfortunately Bode Plots often have regions that are
very noisy. But fortunately these are almost always in
regions that are not important to us. At frequencies
where the open loop gain is very high (usually at low
frequencies), the servo loop performs very well, and
the Position closely matches the Command signal. In
this case, the calculation of the Error signal (see
above) is calculated by taking the difference between
two nearly equal values. A small error in Position
measurement will then result in a relatively large error
in the calculated error value. Similarly, when the
system has a very low gain (usually at high
frequencies), the position signal is very small and
often highly influenced by noise, or if an encoder is
used, by encoder resolution. The regions of interest in
order to determine system stability, are where the
open loop gain is near 0db and the measurements

are normally very accurate.

Additionally, instead of injecting sine waves at various frequencies individually, KMotion uses a
technique where a random noise signal that is rich in many frequencies is injected. Using a method
involving an FFT (Fast Fourier Transform) of the input and output, the entire frequency response
may be obtained at once.

Bode Plot analysis is fundamentally based on the assumption that the system being analyzed is
linear. Linear in this context means that any signal injected into a system that provides a response,
might be broken into parts, each piece injected separately, and all the resulting responses when
summed would equal the original response. If a system being measured does not meet this criteria

http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#Amplitude
http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm

KFLOP User Manual 2016

7 | P a g e

then the result is basically useless and meaningless. Masses, Springs, Dampers, Inductors,
Resistors, Capacitors, and all combinations thereof are examples of devices which produce very
linear effects. Static friction, Saturation, and Encoder count quantization, are examples of non-linear
effects.

It is therefore very important to verify that while the system is being
measured that it is operating in its linear range. This usually entails
that the system isn't being driven too hard (or too fast), so that the
drive to the system (Output) is not reaching saturation. Additionally, it
is important to verify that the system is being driven sufficiently hard
(or slowly enough) that a measurable Position change is being

observed. The Noise Injection Amplitude and Cutoff Frequency should be adjusted to optimize
these conditions. Noise Amplitude has the same units as Position Measurement. It should be noted
that setting the Cutoff Frequency very low, may reduce the high frequency stimulation to the system
to such a point that the higher frequency measurements are invalid or very noisy.

The Bode Plot Screen allows the measurement data to be viewed in the time domain in order to
check the signal amplitudes so that the optimal signal levels may be used in order to minimize the
non-linear effects of saturation and quantization. Select the Plot Type drop down list shown below to
switch between frequency domain and dime domain displays.

KFLOP User Manual 2016

8 | P a g e

A typical time domain measurement is shown below. The blue graph shows the random stimulus to
the system. The red graph shows the system's response, which in this example is the output of an
encoder. Note that the position is quantized to integer counts and has a range of approximately 10
counts. This is nearly the minimum number of counts to expect a reasonable Bode Plot
measurement. A larger range of encoder counts could be obtained by driving the system harder by
increasing the Noise Injection Amplitude, provided there is additional output drive available.

KFLOP User Manual 2016

9 | P a g e

The graphs below include the output drive signal shown in green. Note that the output drive is on
the verge of saturating at the maximum allowed output value (example is from a 3 phase brushless
motor, maximum allowed PWM counts of 230). This shows that we are driving the system as hard
as possible without saturating in order to obtain the most accurate measurement.

Another means of improving the measurement accuracy (as well as servo performance in general)
is obviously to increase the encoder resolution if economically or otherwise feasible.

KFLOP User Manual 2016

10 | P a g e

Compensator Response

KFLOP User Manual 2016

11 | P a g e

The Bode Plot Screen is also capable of graphing a Bode Plot of the combined PID and IIR Filters.
This is often referred to as the Compensator for the system. The Cyan graph shows the magnitude
of the compensator and the violet graph shows the phase of the compensator. Notice that in this
example the maximum phase has been adjusted to match the 0 db crossover frequency of the
system (~ 233 Hz) to maximize the system phase margin.

Axis Control

The Axis Control buttons are present to conveniently disable (Kill), Zero, or Enable
an axis. If the axis becomes unstable (possible due to a gain setting too high), the
Kill button may be used to disable the axis, the gain might then be reduced, and
then the axis may be enabled. The Enable button downloads all parameters from all
screens before enabling the axis in the same manner as the Measure button
described above.

Note for brushless output modes that commutate the motor based on the current position, Zeroing
the position may adversely affect the commutation.

http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#Measurement

KFLOP User Manual 2016

12 | P a g e

Save/Load Data

The Save/Load Data buttons allow the captured Bode Plot to be saved to a text file
and re-loaded at a later time. The text file format also allows the data to be
imported into some other program for display or analysis. The file format consists of
one line of header followed by one line of 9 comma separated values, one line for
each frequency. The values are:

1. Frequency in Hz
2. Input Stimulus - Real Part of complex number
3. Input Stimulus - Complex Part of complex number (always zero)
4. Measured Closed Loop Output - Real Part of complex number
5. Measured Closed Loop Output - Complex Part of complex number
6. Open loop Magnitude - in decibels
7. Open loop Phase - in degrees
8. Open loop Magnitude - in decibels - "smoothed"
9. Open loop Phase - in degrees - "smoothed"

Example of data file follows:

Freq,InputRe,InputIm,OutputRe,OutputIm,Mag,Phase,SmoothMag,SmoothPhase
0,2.329706e+007,0,2.344316e+007,0,44.10739,-180,0,0
5.425347,1.968735e+007,0,1.98995e+007,-32055.19,39.34598,-171.5001,39.34598,-171.5001
10.85069,1.816919e+007,0,1.848909e+007,-713239.6,27.48402,-116.3662,29.58283,-139.1553
16.27604,2.024904e+007,0,2.124962e+007,-1383543,21.91849,-129.5997,25.14718,-134.5283
21.70139,1.53403e+007,0,1.645491e+007,-1651059,18.38331,-129.7526,22.70204,-127.6139
27.12674,1.225619e+007,0,1.301412e+007,-1336369,18.60411,-125.4229,20.60267,-123.6751
32.55208,7014539,0,7393482,-958714.3,17.18516,-118.9553,18.9778,-119.2762

.

.

.

Update Pushbutton

The Update button may be used to update the displayed compensator graph if any
parameters (on other screens) have been modified and not downloaded or otherwise
acted upon. If Measure, Download, Step, Move, Save, Close, or Enable is used on

this or the any other screen then this command is unnecessary, however if none of these
commands is performed, then this button may be used to update the graph.

http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#Compensator_Response

KFLOP User Manual 2016

13 | P a g e

G Code Quick
Reference G Code Screen

G Codes

G0 X3.5 Y5.0 Z1.0
A2.0 (Rapid move)
G1 X3.5 Y5.0 Z1.0
A2.0(linear move)
G2 X0.0 Y0.5 I0 J0.25
(CW Arc move)
G3 X0.0 Y0.5 I0 J0.25
(CCW Arc move)
G4 P0.25
(Dwell seconds)
G10L2Pn
G10L2P1X0Y0Z0
(Set Fixture Offset #n)
G20 Inch units
G21 mm units
G28 Move to
Reference Position #1
G30 Move to
Reference Position #2
G40 Tool Comp Off
G41 Tool Comp On
Left of Contour)
G42 Tool Comp On
(Right of Contour)
G43 Hn (Tool #n length
comp On)
G49 (Tool length comp
off)
G53 Absolute Coord
G54 Fixture Offset 1
G55 Fixture Offset 2
G56 Fixture Offset 3
G57 Fixture Offset 4
G58 Fixture Offset 5
G59 Fixture Offset 6
G59.1 Fixture Offset 7
G59.2 Fixture Offset 8
G59.3 Fixture Offset 9
G90 Absolute
Coordinates
G91 Relative
Coordinates
G92 Set Global Offset

Show screen feature descriptions

See Also G Code Viewer Screen and Tool Setup Screen

The G Code Screen allows the user to edit G Code Programs and
execute them.

GCode is a historical language for defining Linear/Circular/Helical
Interpolated Motions often used to program numerically controlled
machines (CNC Machines).

See the Quick Reference to the left for commonly used G Code
commands.

http://www.dynomotion.com/Help/GCodeScreen/GCodeScreenBreakout.htm
http://www.dynomotion.com/Help/KMotionCNC/GCodeViewerScreen.htm
http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenM3.htm

KFLOP User Manual 2016

14 | P a g e

Coordinates G92 X0Y0
Z0

M Codes:

M0 (Program Stop)
M2 (Program End)
M3 Spindle CW
M4 Spindle CCW
M5 Spindle Stop
M6 Tool Change
M7 Mist On
M8 Flood On
M9 Mist/Flood Off
M98 Pxxx Call
Subroutine
M99 Return from
Subroutine

Other Codes:

F (Set Feed rate in/min
or mm/min)
S (Spindle Speed)
D (Tool)
O Subroutine Label

Comments:

(Simple Comment)
(MSG,OK toContinue?)
(CMD,EnableAxis0)
(BUF,SetBitBuf29)

KMotion's G Code interpreter was derived from the Open Source
EMC G Code Interpreter. Click here for the EMC User Manual (Only
the G Code portions of the manual, Chapters 10-14 pertain to KMotion
G Code)

Specially coded comments embedded within a GCode program may
be used to issue KMotion Console Script commands directly to
KMotion.

A comment in the form: (CMD,xxxxxx) will issue the command xxxxxx
immediately to KMotion as soon as it is encountered by the
Interpreter. Any KMotion command that does not generate a response
may be used in this manner.

A comment in the form: (BUF,xxxxxx) will place the command xxxxxx
into KMotion's coordinated motion buffer. Coordinated motion
sequences are downloaded to a motion buffer within KMotion before
they are executed. This guarantees smooth uninterrupted motion. The
BUF command form allows a command to be inserted within the buffer
so they are executed at an exact time within the motion sequence.
Only the following KMotion Script commands may be used in this
manner.

SetBitBuf, ClearBitBuf, SetStateBitBuf.

Additionally, a comment in the form: (MSG,xxxxxx) will pause GCode
Execution and display a pop-up message window displaying the
message xxxxxxx.

http://www.dynomotion.com/Help/GCodeScreen/EMC_Handbook/node45.html

KFLOP User Manual 2016

15 | P a g e

 C Program Screen

Constants:

FALSE 0

TRUE 1

PI

3.14159265358979323846264

PI_F 3.1415926535f

TWO_PI (2.0 * PI)

TWO_PI_F (2.0f * PI_F)

PI_2F (PI_F * 0.5f)

TRAJECTORY_OFF 0

TRAJECTORY_INDEPENDENT

1

TRAJECTORY_LINEAR 2

TRAJECTORY_CIRCULAR 3

TRAJECTORY_SPECIAL 4

Axis Input Modes

ENCODER_MODE 1

ADC_MODE 2

RESOLVER 3

USER_INPUT_MODE 4

Axis Output Modes

MICROSTEP_MODE 1

DC_SERVO_MODE 2

BRUSHLESS_3PH_MODE 3

BRUSHLESS_4PH_MODE 4

DAC_SERVO_MODE 4

Data Gather/Plot Functions:

void

SetupGatherAllOnAxis(int c,

int n_Samples);

void TriggerGather();

int CheckDoneGather();

Analog I/O Functions:

The C Program Screen allows the user to edit C language
programs, compile, link, download, and run them within the
KMotion board. C programs executing within the KMotion
board have direct access to all the Motion, I/O, and other
miscellaneous functions incorporated into KMotion System.

One of the most powerful features of the KMotion system is the
ability for a user to compile and download native DSP programs
and have them run in real time. Native DSP code runs faster
than interpreted code. The TMS320C67x DSP that powers the
KMotion system has hardware support for both 32 bit and 64 bit
floating point math. Multiple threads (programs) may execute
simultaneously (up to 7). The integrated C compiler allows with

a single pushbutton to save, compile, link, download,
and execute all within a fraction of a second. After programs
have been developed and tested they may be flashed into
memory and run stand alone with no host connection.

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#FLASH
http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#FLASH

KFLOP User Manual 2016

16 | P a g e

ADC(ch);

DAC(ch, value);

Power Amp Functions:

void WritePWMR(int ch, int v);

void WritePWM(int ch, int v);

void Write3PH(int ch, float v,

double angle_in_cycles);

void Write4PH(int ch, float v,

double angle_in_cycles);

Timer Functions:

double Time_sec();

void WaitUntil(double

time_sec);

void Delay_sec(double sec);

double

WaitNextTimeSlice(void);

Axis Move Functions:

void DisableAxis(int ch);

void EnableAxisDest(int ch,

double Dest);

void EnableAxis(int ch);

void Zero(int ch);

void Move(int ch, double x);

void MoveRel(int ch, double

dx);

int CheckDone(int ch);

void MoveXYZ(double x,

double y, double z);

int CheckDoneXYZ();

void DefineCoordSystem(int

axisx, int axisy,

int axisz, int axis a);

Digitial I/O Functions:

void SetBitDirection(int bit,

Other features of the C Program Screen include a rich text editor
with syntax highlighting, keyword drop down lists, function tips,
unlimited undo/redo, and Find/Replace with regular expressions.

See list on left for available constants and functions.

For a more details on the functions, see the KMotionDef.h header
file. This file is normally included into a user program so that all
accessible base functions and data structures are defined.

See PC-DSP.h for common definitions between the PC host and
KMotion DSP.

http://www.dynomotion.com/Help/ProgramScreen/ShowDropDown.htm
http://www.dynomotion.com/Help/ProgramScreen/ShowTips.htm
http://www.dynomotion.com/Help/ProgramScreen/ShowContextMenu.htm
http://www.dynomotion.com/Help/ProgramScreen/ShowContextMenu.htm
http://www.dynomotion.com/DSP_KFLOP/KMotionDef.h
http://www.dynomotion.com/DSP_KFLOP/PC-DSP.h

KFLOP User Manual 2016

17 | P a g e

int dir);

int GetBitDirection(int bit);

void SetBit(int bit);

void ClearBit(int bit);

void SetStateBit(int bit, int

state);

int ReadBit(int bit);

Print to Console Screen

Functions:

int printf(const char *format,

...);

Print to Windows File

Functions:

FILE *fopen(const char*,

const char*);

int fprintf(FILE *f, const char

* format, ...);

int fclose(FILE *f);

Thread Functions:

void StartThread(int thread);

void PauseThread(int thread);

void ThreadDone();

int ResumeThread(int

thread);

Math Functions:

double sqrt(double x);

double exp(double x);

double log(double x);

double log10(double x);

double pow(double x, double

y);

double sin(double x);

double cos(double x);

double tan(double x);

double asin(double x);

double acos(double x);

double atan(double x);

KFLOP User Manual 2016

18 | P a g e

double atan2(double y,

double x);

float sqrtf (float x);

float expf (float x);

float logf (float x);

float log10f(float x);

float powf (float x, float y);

float sinf (float x);

float cosf (float x);

float tanf (float x);

float asinf (float x);

float acosf (float x);

float atanf (float x);

float atan2f(float y, float x);

KFLOP User Manual 2016

19 | P a g e

IIR Filter Screen

The IIR Filter Screen allows setting various IIR (Infinite Impulse Response) Filters into the control
loop. KMotion allows up to three - 2nd order bi-quadratic stages per axis to be connected in
cascade. See the KMotion Servo Flow Diagram for the placement of the IIR Filters.

KMotion implements the filters using Z-domain coefficients shown on the bottom half of the screen.
Because of the common confusion of the names and signs of the coefficients, the transfer function
form is shown for reference.

Note that setting B0=1.0 and all other coefficients, B1, B2, A1, and A2, to zero causes a transfer
function of unity, effectively bypassing the filter. A Clear pushbutton is available to conveniently set
this mode.

http://www.dynomotion.com/Help/ServoFlowDiagram.htm

KFLOP User Manual 2016

20 | P a g e

The top portion of each filter section allows various common filters to be specified in the s-domain.
Supported filter types are: 1st order Low Pass, 2nd Order Low Pass, Notch, and two real poles and
zeros and are selected using a drop-down list box. Z-domain is a place holder used as a reminder
that the z-domain coefficients were determined directly by some other means. The form of each of
the filters in the s-domain is shown below.

http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm#Low_Pass_(1st_order)
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm#Low_Pass_(2nd_order)
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm#Notch
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm#Pole-Zero
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm#Pole-Zero
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm#Low_Pass_(1st_order)
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm#Low_Pass_(2nd_order)
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm#Notch
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm#Pole-Zero

KFLOP User Manual 2016

21 | P a g e

If an s-domain filter type is selected and its corresponding parameters specified, then depressing
the Compute pushbutton will convert the s-domain transfer function to the z-domain using Tustin's
approximation (with frequency pre-warping) and automatically fills in the z-domain coefficients. Note
that KMotion always utilizes the current (most recently computed or entered) z-domain coefficients,
regardless of any changes that might be made to the s-domain section.

Note that the Bode Plot Screen has the capability to graph the combined transfer function of all
three IIR filters and the PID filter. This is referred to as the Servo Compensation. To view the
transfer function of a single IIR filter, set the other filter and PID sections to unity (for PID set P=1,
I=0, D=0 or for an IIR Filter B0=1, B1= B2=A1=A2=0).

Below are examples of each of the s-domain filter types (shown individually):

Low Pass (1st order)

A Low Pass filter is commonly used in a servo system to reduce high frequency noise (or spikes) in
the output. It also has the desirable effect of decreasing the gain at high frequencies. If a system's
gain at high frequencies is increased sufficiently to reach 0 db it may become unstable.
Unfortunately it has the effect of introducing phase lag (negative phase) which will reduce the phase
margin. A 1st order Low Pass filter has 45 degrees phase and attenuation of -3db at the specified
cutoff frequency. The cutoff frequency should normally be specified much higher than the servo
bandwidth in order to have only a small phase lag at the system's bandwidth.

Low Pass (2nd order)

A 2nd order Low Pass filter is commonly used in a similar manner as a 1st order low pass filter,
except that it has higher attenuation than a 1st order low pass filter. Unfortunately it also introduces
more phase lag than a 1st order low pass filter. In most cases the cutoff frequency for a 2nd order
low pass filter will have to be specified at a higher frequency than a 1st order filter, in order to have
similar phase lag at the system bandwidth frequency. Even so, the 2nd order low pass filter is
usually preferable in that it provides slightly more high frequency attenuation and "smoothing" of the
output.

A 2nd order Low Pass filter also allows a Q parameter which changes the sharpness of the filter. A
smaller value of Q results in a sharper filter at the expense of some peaking (gain increases before

http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm
http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#phase_margin
http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#phase_margin
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm#Low_Pass_(1st_order)
http://www.dynomotion.com/Help/FilterScreen/LowPassBig.PNG

KFLOP User Manual 2016

22 | P a g e

decreasing). A Q value of 1.41 (called a Butterworth filter), shown immediately below, is the minimal
value that may be specified without peaking.

A Q value of 0.7 shows “peaking”.

Notch

A Notch filter is commonly used in servo system when a sharp mechanical resonance would
otherwise cause a system to become unstable. A Notch filter is able to attenuate a very localized
range of frequencies. It has a damping factor, η, which effects sharpness or width of the notch. The
disadvantage of using a notch filter is some phase lag which tends to decrease phase margin. The
introduced phase lag will be less the narrower the notch is (less damping), as well as the distance
the notch frequency is above the system bandwidth.

Shown below are two notch filters both at 400 Hz, one with 0.2 damping and the other with 0.4
damping.

http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#phase_margin
http://www.dynomotion.com/Help/FilterScreen/LowPass2ndBig.PNG
http://www.dynomotion.com/Help/FilterScreen/LowPass2ndQ7Big.PNG

KFLOP User Manual 2016

23 | P a g e

Pole-Zero

A Pole-Zero filter is commonly used in a lead-lag configuration shown below to shift the phase
positive at the 0 db crossover frequency of the system in order to increase phase margin. The filter
shown has maximum positive phase of approximately 80 degrees at 200 Hz. This is accomplished
by setting the N1,N2 (zeros or numerator frequencies) 2X lower than 200 Hz (100 Hz), and the
D1,D2 (poles or denominator frequencies) 2X higher than this (400 Hz). A lead-lag filter (or
compensator) may often be used in place of derivative gain (in the PID stage), and has a significant
advantage of lower high frequency gain. If a system's gain at high frequencies is increased
sufficiently to reach 0 db it may become unstable.

http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#phase_margin
http://www.dynomotion.com/Help/FilterScreen/Notchp2Big.PNG
http://www.dynomotion.com/Help/FilterScreen/Notchp4Big.PNG

KFLOP User Manual 2016

24 | P a g e

Copy C Code to Clipboard

This pushbutton causes the current z-domain filter coefficients to be copied to the
clipboard in a form that may be pasted directly into a KMotion C Program, see also
the C Program Screen.

ch0->iir[0].B0=232.850006;

ch0->iir[0].B1=-450.471008;

ch0->iir[0].B2=217.869995;

ch0->iir[0].A1=1.001990;

ch0->iir[0].A2=-0.250994;

ch0->iir[1].B0=1.000000;

ch0->iir[1].B1=0.000000;

ch0->iir[1].B2=0.000000;

ch0->iir[1].A1=0.000000;

ch0->iir[1].A2=0.000000;

ch0->iir[2].B0=0.175291;

ch0->iir[2].B1=0.350583;

ch0->iir[2].B2=0.175291;

ch0->iir[2].A1=0.519908;

ch0->iir[2].A2=-0.221073;

Download

The Download push button downloads the filters for the selected axis (along with
all axis configuration and tuning parameters) to the KMotion.

http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm
http://www.dynomotion.com/Help/FilterScreen/LeadLagBig.PNG

KFLOP User Manual 2016

25 | P a g e

Configuration and FLASH Screen

The Configuration and FLASH Screen displays and allows changes to KMotion's configuration
and allows the configuration, new firmware, or user programs to be FLASH'ed to non volatile

memory.

Each axis channel is configured independently. To view or make changes to
a configuration first select the desired axis channel using the channel drop
down. Note that changing an axis on any screen switches the active channel

on all other screens simultaneously.

The parameters for each axis's configuration are grouped into three classes: Definitions, Tuning,
and Filters. Each class of parameters are displayed on three corresponding screens:

KFLOP User Manual 2016

26 | P a g e

 Configuration Screen
 Step Response Screen
 IIR Filter Screen

The Configuration Screen contains definition parameters that should be set once and remain set
unless a physical change to the hardware is made. For example, a Stepper motor might be replaced
with a Brushless Motor and Encoder.

The Step Response Screen contains parameters that are tuning related and are located where the
tuning response is most often adjusted and checked. For example, PID (proportional, intparameters
are located there.

The IIR Filter Screen contains parameters related to servo filters.

Utilities

Configuration settings are normally defined and tested using the KMotion Screens. After they have
been determined to work properly they can be converted to C code and placed into a C
program that can then be used by applications to configure KFLOP without needing to use KMotion
Screens. Axis Channel Settings can also be loaded/saved to disk files. See Flash Video

The buttons along the bottom of the Configuration Screen allow a set of axis parameters to be:

 Saved or Loaded from a disk file (*.mot)
 Uploaded or Downloaded to a KMotion
 Converted to equivalent C Code for use in a KMotion C Program (note you will not see

anything happen but the data will be placed in the clipboard. Paste it into a C Program to
see it)

Note that these buttons operate on all parameters (for one axis) from all screens as a unit.

To completely synchronize all the Configuration Screens (Config/Flash, Step Response, and Filters)
for all axes to a C Program use the Export All to Open C Program Button. To Import all settings
from a C Program select the Import All from Open C Program Button. The C program must be
open on the C Program Screen. In both cases the C Program will be scanned to find blocks of axis
settings and will determine which axis exist in the C Program. The results of the scan will be
displayed before importing or exporting the settings. The dialog box below shows an example
where 3 channels were found. Select OK to proceed with the import.

http://dynomotion.com/Help/FlashHelp/Parameters/index.html
http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm

KFLOP User Manual 2016

27 | P a g e

Axis Modes

Use the respective dropdown to set either the axis
Input or Output Mode. The input mode defines the
type of position measurement (if required) for the axis.
Closed loop control always requires some type of
position measurement. For open loop stepper motor
control, position measurement is optional. The output
mode determines how the output command should be
achieved. Either by driving the on board PWMs and
Full Bridge Drivers to control a specific type of motor,

by driving a DAC signal that will drive an external power amplifier, or by
driving Step and Direction digital outputs. For External Step and
Direction Outputs see Step and Direction Output Mode and Closed Loop
Step/Dir Output Mode.

Input Channels

The Input Channels section specifies which channels for the
selected input device will be used. Some Input Modes require
two devices to be specified and some Input Modes only
require one device. If the selected Input Mode only requires
one device then the second Input Channel (Input Chan 1) is
not used and my be set to any number. This may be the
channel of an Encoder input or an ADC input depending on the

selected input mode. Resolvers requires two ADC input channels (for sine and cosine), for all other
modes the second channel number is not used.

http://www.dynomotion.com/Help/StepAndDirection/StepAndDir.htm
http://www.dynomotion.com/Help/ClosedLoopStep/ClosedLoopStepper.htm
http://www.dynomotion.com/Help/ClosedLoopStep/ClosedLoopStepper.htm
http://www.dynomotion.com/Help/ClosedLoopStep/ClosedLoopStepper.htm

KFLOP User Manual 2016

28 | P a g e

The gain and offset parameters are applied to the respective input device. The gain is applied
before the offset, i.e. x' = ax+b, where a is the gain and b is the offset.

Incremental encoders only utilize the gain parameter which may be used to scale or reverse (using
a negative gain) the measurement.

A Resolver is a device that generates analog sine and cosine signals as it's shaft angle changes.
Either one or multiple sine and cosine waves may be produced per revolution of a resolver. An
encoder that generates analog sine and cosine signals may also be connected to a KMotion as
though it was a resolver. Resolver inputs may utilize both gains and offsets and be adjusted such
that the sine and cosine ADC measurements are symmetrical about zero and have the same
amplitude. Gain and offset errors may be introduced by either the ADC input circuitry and/or the
Resolver itself. If one were to plot the sine vs. cosine signals as a resolver's position changes, the
result should be circle. KMotion computes the arctangent of the point on the circle (also keeping
track of the number of rotations) to obtain the current position. An offset or elliptical "circle" will
result in a distorted position measurement throughout the cycle. Therefore note that adjusting the
gains and offsets will result in changing the linearity of the position measurement, not the scale of
the position measurement itself. The scale of a resolver input will always be 2π radians per cycle.

An ADC input uses a single absolute ADC channel input to obtain the position measurement. Gain0
and Offset0 may be used to modify the ADC counts from -2048 .. +2047 to and desired range.

Output Channels

The Output Channels section specifies which channels for the
selected output device will be used. Some Output Modes
require two devices to be specified and some Output Modes
only require one device. For Output modes that only require
one output device the second device will be disabled. If the
selected Output Mode only requires one device then the
second Output Channel (Output Chan 1) is not used and my

be set to any number. The specified output device may be the channel of a PWM connected to an
on-board power amplifier, a Step/Direction Generator, or a DAC that is used to drive an external
power amplifier.

Stepper mode and 4 phase brushless mode require two channels of PWM to be specified.

DC Servo motor (Brush motor type) only require one PWM channel.

3 Phase brushless motors require a consecutive pair of PWM channels. In 3 Phase output mode,
only the Output Channel 0 value is used and must be set to an even PWM number.

For Step and Direction output mode and CL Step (Closed Loop Step/Dir), the output channel 0 is
used to specify which Step/Direction Generator will be used and drive mode (active high/low or
open collector) will be used. Each Step/Direction Generator has assigned I/O Pins. See Step and
Direction Output Mode.

http://www.dynomotion.com/Help/PWM_Description/PWM_Description.htm
http://www.dynomotion.com/Help/StepAndDirection/StepAndDir.htm
http://www.dynomotion.com/Help/StepAndDirection/StepAndDir.htm

KFLOP User Manual 2016

29 | P a g e

Some output devices support the application of a gain and offset. See also the related Console
Commands OutputGain and OutputOffset.

Microstepper Amplitude, Max Following Error, Inv Dist Per Cycle, Lead Compensation

Microstepper Amplitude is only applicable to configurations with output
mode of Microstepper. This parameter sets the amplitude (of the sine
wave) in PWM counts (0 .. 255) that will be output to the sine and
cosine PWM channels while moving slowly or at rest. Note that at
higher speeds KMotion has the ability to increase the amplitude to
compensate for motor inductance effects and may actually be higher.
See Lead Compensation in this same section.

Max Following Error is applicable to all closed loop servo output modes
(DC Servo, 3 Phase Brushless, 4 Phase brushless, and DAC Servo).

Whenever the commanded destination and the measured position differ by greater than this value,
the axis will be disabled (if this axis is a member of the defined coordinate system, then any
coordinated motion will also stop). To disable following errors set this parameter to a large value.

Inv Dist Per Cycle applies to Stepper, 3 Phase, and 4 Phase motors. For a stepper motor, the
distance per cycle defines the distance that the commanded destination should change by for a
motor coil to be driven through a complete sinusoidal cycle. Parameter should be entered as the
inverse (reciprocal) of the distance per cycle. Stepper motors are most often characterized by shaft
angle change per "Full Step". A motor coil is driven through a complete cycle every four - "Full
Steps". See the following examples:

Example #1: A mechanism moves 0.001" for each full step of a step motor It is desired for
commanded distance to be in inches.
Result: One Cycle = 4 full steps = 0.004", Thus InvDistPerCycle = 1.0/0.004 = 250.0 (cycles/inch).
Commanding a move of 1.00 will generate 250 sine waves, or the equivalent of 1000 full steps, or
one inch of movement.

Example #2: InvDistPerCycle is left at the default value of 1.0
Result: Move units are in cycles. Commanding a move of 50 will generate 50 sine waves, or the
equivalent of 200 full steps, or one revolution of a 200 Step or 1.8 degree motor.

For 3 Phase or 4 Phase motors, Inv Dist Per Cycle represents the inverse of the distance for one
complete commutation cycle. See the example below.

Example #3: A 3 phase motor/encoder has a 4096 count per revolution encoder which is used for
position feedback and for motor commutation. InputGain0 is set to 1.0 so position measurement
remains as encoder counts. The motor design is such that the commutation goes through 3
complete cycles each motor revolution.
Result: One Cycle = 4096 counts/3.0 Thus InvDistPerCycle = 3.0/4096 = 0.000732421875.

http://www.dynomotion.com/Help/Cmd.htm#OutputGain
http://www.dynomotion.com/Help/Cmd.htm#OutputOffset

KFLOP User Manual 2016

30 | P a g e

Note that it is important to use a high degree of precision to avoid commutation errors after moving
to very large positions (or at constant velocity for a long period of time). KMotion maintains Inv Dist
Per Cycle (as well as position) as a double precision (64 bit) floating point number for this reason
(more than 70 years at 1 MHz would be required to have 1 count of error)

Lead Compensation may be used to compensate for motor inductance. When a voltage is applied
to a coil at a low frequencies, the current flow is dictated by the coil's resistance and is constant. As

the frequency increases at some point, where , the inductance, L, begins to dominate
and the current drops (see plot below). KMotion's Lead Compensator has the opposite effect, it
has a constant gain of 1 and at some point increases with frequency. The Lead Compensation
parameter sets (indirectly) the frequency where this occurs. If the frequency is set to match the
frequency of the motor, the effects will cancel, and the motor current (and torque) will remain
constant to a much higher frequency.

This assumes that the nominal drive voltage is lower than the available supply voltage. For
example, a 5V stepper motor might be driven with a 15V supply to allow head room for the applied

voltage to be increased at high frequencies
(speeds).

The simple formula that implements the Lead
Compensation is:

v ' = v + Δv L

where v is the voltage before the
compensation, v' is the voltage after the
compensation, Δv is the change in output
voltage from the last servo sample, and L is
the Lead Compensation value.

The following formula will compute the "knee"
frequency for a particular lead and servo
sample rate (normally T=90 us).

or the inverse of this formula will provide the
lead value to position the knee at a particular
frequency.

KFLOP User Manual 2016

31 | P a g e

The Following table generated from the above formula may also be used. For most motors the Lead

Compensation values will be within the range of 5 - 20.

Freq, Hz Lead

50 35.37

60 29.47

70 25.26

80 22.11

90 19.65

100 17.69

120 14.74

140 12.63

160 11.06

180 9.83

200 8.85

220 8.04

240 7.37

260 6.81

280 6.32

300 5.90

350 5.06

400 4.43

450 3.94

500 3.55

550 3.23

600 2.96

650 2.74

700 2.54

750 2.38

800 2.23

850 2.10

900 1.99

950 1.88

1000 1.79

KFLOP User Manual 2016

32 | P a g e

This plot above displays a simple 0.5 second motion with no Lead Compensation for a Microstepper
Motor. Position axis shown on the primary (left axis) for the red plot has units of cycles. PWM output
shown on the secondary (right axis) for the green plot has units of PWM counts. Move parameters
are: Vel=200 cycles/sec, Accel=200 cycles/sec2, Jerk=10000 cycles/sec3. Note that regardless of
velocity PWM amplitude is constant

This plot displays the same 0.5 second motion with Lead Compensation = 27.0. All other
parameters same as above. Note how PWM amplitude increases with velocity

KFLOP User Manual 2016

33 | P a g e

If motor parameters are unknown, a trial and error approach may be used to find the best lead
compensation value. The following procedure may be used:

1. Set Lead Compensation to zero
2. Increase motor speed until a drop in torque is first detected
3. Increase Lead Compensation until normal torque is restored

Setting the Lead Compensation too high should be avoided, as it may cause over current in the
motor at medium speeds or voltage distortion due to saturation (clipping).

Master/Slave Settings

Configures the axis to be slaved to another axis. If slaved when the master
axis moves, this axis will be commanded to move by an amount as scaled
by the slave gain. If the Slave Gain is negative the slaved axis will move in
the opposite direction as the Master. See also Console commands
SlaveGain and MasterAxis. Setting the Master axis as -1 will disable
slaving for this axis.

Backlash Settings

Configures the Backlash Compensation for the axis. To compensate for
backlash in an axis, an offset in the commanded position may be applied
when moving in the positive direction, and not applied when moving in the
negative direction. The amount and rate at which the offset is applied is
specified here. See also BacklashMode, BacklashAmount and
BacklashRate Console commands.

Limit Switch Options

KMotion has the ability to monitor limit switch inputs
for each axis and stop motion when a physical limit
switch is detected. The limit switch options allow this
feature to be enabled or disabled for each limit
(positive or negative), what specific bit to be
monitored for each limit, what polarity of the bit

http://www.dynomotion.com/Help/Cmd.htm#SlaveGain
http://www.dynomotion.com/Help/Cmd.htm#MasterAxis
http://www.dynomotion.com/Help/Cmd.htm#BacklashMode
http://www.dynomotion.com/Help/Cmd.htm#BacklashAmount
http://www.dynomotion.com/Help/Cmd.htm#BacklashRate

KFLOP User Manual 2016

34 | P a g e

indicates contact with the limit, and what action to perform when a limit is detected.

Select Watch Limit to enable limit switch monitoring.

Select Stop when low to select negative true logic for the limit (motion will be stopped when a low
level is detected).

Specify a bit no. for which bit is to be monitored for the limit condition. See the Digital IO Screen for
current I/O bit status and a recommended bit assignment for limit switches (bits 12 through 19). If in
a particular application it isn't critical to determine which Limit Switch (either positive or negative, or
even which axis) the number of digital I/O bits consumed by limit switches may be reduced by "wire
ORing" (connecting in parallel) multiple switches together. In this case, the same bit number may be
specified more than one place.

The Action drop down specifies what action should be performed when a limit is encountered.

Kill Motor Drive - will completely disable the axis whenever the limit condition is present. Note that it
will not be possible to re-enable the axis (and move out of the limit) while the limit condition is still
present and this mode remains to be selected.

Disallow drive into limit - will disable the axis whenever the limit condition is present and a motion is
made into the direction of the limit. This mode will allow the axis to be re-enabled while inside the
limit and will allow a move away from the limit.

Stop Movement - this action will keep the axis enabled, but will FeedHold the Coordinate
System. This will cause commanded positions to decelerate to a stop in a controlled
manner. Independent motions will decelerate to a stop in the same manner as a Jog to zero speed
would cause. Coordinated Motion will decelerate all axes to a stop along the motion path.

The FeedHold mode will remain and prevent any further motion until cleared. In KMotion the
button will flash and can be pushed to clear the Feedhold. In KMotionCNC Feedhold can be

cleared by pushing . If further motion is attempted into the Soft Limit another
Feedhold will occur. However, if no motion, or motion out of the Limit, Feedhold will remain clear
and the motion will be allowed.

Soft Limits

Soft Limits will always prevent motion in the same manner as a Hardware Limit with the Stop
Movement Action Selected. This occurs regardless of the Action Type Selected for the Hardware
Limit Switches. To disable Soft Limits set them to a huge range which could never occur. Soft
Limits prevent motion within KFLOP when Jogging, moving and so forth. They also are are
uploaded by Applications such as KMotionCNC and used to prevent motion during Trajectory
Planning.

http://www.dynomotion.com/Help/DigitalIOScreenKFLOP/DigitalIOScreen.htm

KFLOP User Manual 2016

35 | P a g e

 Launch on Power Up

The launch on power up configuration specifies which User Programs are to be
automatically launched on power up for stand alone operation of KMotion. See
the C Program Screen for information on how to Edit, Compile, and Download a
C program into KMotion for execution into one (or more) of the 7 Thread
program spaces within KMotion.

To configure a program execute on power up, perform the following steps:

1. Compile and Download a C Program to a particular Thread Space.
2. Select Launch on Power Up for the same Thread.
3. Flash the User Memory (see following section).
4. Disconnect the Host USB cable
5. Cycle Power on the KMotion

FLASH

The entire user memory space may be Flashed into nonvolatile memory by
depressing the Flash - User Memory button. This saves all of the axis
configurations, all user program thread spaces, and the user persistent data
section. On all subsequent power up resets, KMotion will revert to that saved
configuration. (note that it is preferred to have the host, or a user program,
configure the board before each use rather than relying on the exact state of a
KMotion set to a particular state at some point in the past).

To upgrade the system firmware in a KMotion use the Flash - New Version button. The user will be
prompted to select a DSPKMotion.out COFF file from within the KMotion Install Directory to
download and Flash. Note that all user programs and data will be deleted from KMotion when
loading a new version.

After the firmware has been flashed it is necessary to re-boot the KMotion in order for the new
firmware to become active.

http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm

KFLOP User Manual 2016

36 | P a g e

It is important that the <Install Directory>\DSP_KMotion\DSPKMotion.out file match the firmware
that is flashed into KMotion. User C programs are Linked using this file to make calls and to access
data located within the KMotion firmware. Whenever a user program is compiled and linked using
this file, the timestamp of this file is compared against the timestamp of the executing firmware (if a
KMotion is currently connected). If the timestamps differ, the following message will be displayed,
and it is not recommended to continue. The "Version" Console Script Command may also be used
to check the firmware version.

In all cases while flashing firmware or user programs the process should not be interrupted or a
corrupted flash image may result which renders the board un-bootable. However if this occurs the
Flash Recovery mode may be used to recover from the situation. To perform the recovery, press
the Flash Recovery button and follow the dialog prompts to:

1. Select the firmware file to boot
2. Turn off KMotion
3. Turn on KMotion
4. After KMotion boots, Flash the New Version

KFLOP User Manual 2016

37 | P a g e

Step Response Screen

The Step Response Screen allows changes to system tuning parameters and allows measurement
and graphs of the system's time response for either a Move Profile or a Step Function. The graph
shown above is of an applied step function of 400 counts. The graphs shown below are of a profiled
move (and back) of 400 counts. The first has the Output drive hidden and the second has the
Output drive displayed. Click on the graphs for a larger view. Note that the Output drive signal
contains large spikes. This is the result of quantization error in the measured position. Quantization
error in the measured position makes it appear to the system as if there was no motion, and then
suddenly as if there was a relatively quick motion of one count in a single servo sample cycle. This
is a non-linear effect. In some cases these "spikes" may exceed the output range causing saturation
a still further non-linear effect. A low pass filter may be used to "smooth" the output, see the IIR
Filter Screen, but has limits. Attempting too much "smoothing" by setting a lower frequency will
eventually have an effect on the performance of the system, reducing the phase margin. Normally,
the cutoff frequency of the low pass filter should be significantly larger than the system bandwidth.

http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#linear
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm
http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#phase_margin

KFLOP User Manual 2016

38 | P a g e

There are three basic time domain plot types that may be selected from the drop down list, which
are shown below.

They consist of either:

1. Commanded Position, Measured Position, and Motor Output
2. Position Error and Motor Output
3. Commanded Velocity, Measured Velocity, and Motor Output

http://www.dynomotion.com/Help/StepScreen/MoveGraphBig.PNG
http://www.dynomotion.com/Help/StepScreen/MoveGraphOutputBig.PNG

KFLOP User Manual 2016

39 | P a g e

For all three plot types the Motor Output is always displayed as a secondary Y axis on the right side
of the graph. The other plotted values are on the primary left Y axis. The X axis is always time in
seconds. After a particular plot type has been selected, each individual plot variable may be
displayed or hidden by selecting the checkbox with the corresponding name (and color) of the
variable.

Any portion of the graph may be zoomed by left-click dragging across the graph. Simply select the
area of interest. Right clicking on the graph will bring up a context menu that allows zooming out
completely or to the previous zoom level.

Below is an example of a graph of Position Error (for the same 400 count move shown above).
Position Error is defined as Measured Position - Commanded Position. The same data as that is
plotted in the Command/Position plots is used, however instead of plotting both values, the
difference is plotted. Note that because the Measured Position is quantized to integer encoder
counts, the quantization effect is also observed in the Position Error.

The third type of plot displays the Velocity of the Commanded and/or Measured Position. Velocity
units are Position Units per second. When a Move is commanded, a motion profile is computed
which achieves the motion in the shortest time without exceeding the maximum allowed velocity,
acceleration, or jerk. Because the Command is a theoretical profile computed using floating point
arithmetic, it is very smooth. The blue graph immediately below shows such a plot. In a velocity
graph, slope in the graph represents acceleration. In this case a relatively low value specified for
maximum jerk causes the changes in slope to be gradual. The second plot below is the same data
but with the Measured velocity displayed along with the Commanded velocity. Because of encoder
resolution limitations, measured velocity calculated using a simple position difference per sample
period tends to be highly quantized as shown. In this example even at our peak velocity at ~ 23,000
position counts per second this results in a maximum of only 3 position counts per servo sample
period.

KFLOP User Manual 2016

40 | P a g e

The velocity graph below, shows the effect of setting the maximum allowed jerk to a very large
value (100X higher than the graph above). Note how the slope of the velocity changes abruptly
which represents a high rate of change of acceleration (jerk).

http://www.dynomotion.com/Help/StepScreen/VelCmdOnlyGraphBig.PNG
http://www.dynomotion.com/Help/StepScreen/VelGraphBig.PNG

KFLOP User Manual 2016

41 | P a g e

Tuning Parameters – PID

The PID (proportional, integral, and derivative) gains set the
amount of feedback of the error itself (proportional), the
integration of the error (integral), and the derivative of the
position (derivative) that is applied to the output. Also see the

KMotion Servo Flow Diagram.

The units of the proportional gain are in Output Units/Position Units. For example if the Position
Units are in encoder counts, and the Output Units are in PWM counts, then a gain of 10.0 would
apply an output drive of 10 PWM for an error of 1 encoder count.

The units of the integral gain are in Output Units/Position Units per Servo Sample Time. KMotion's
Servo Sample Time is fixed at 90µs. An integrator basically sums the position error every servo
sample. For example, with an integral gain of 10, and an error of 1 encoder count for 5 servo
samples, an output drive of 50 PWM counts would be applied Integrator gain is normally used to
achieve high accuracy. This is because even a very small error will eventually integrate to a large
enough value for there to be an corrective action. In fact, having any integrator gain at all
guarantees a steady state error (average error) of zero. This effect also guarantees that there will
always be some overshoot in response to a step function, otherwise the average error could not be
equal to zero.

The units of the derivative gain are in Output Units/Position Units x Servo Sample Time. The
derivative term is simply the change in position from one servo sample to the next. For example,
with a derivative gain of 10, and a position change of 1 encoder count from the previous servo
sample, an output drive of -10 PWM counts would be applied. The negative sign shows that the
output is applied in a manner to oppose motion. Derivative gain has the effect of applying damping,

http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/AnalogIOScreenKFLOP/AnalogIOScreen.htm#PWMs
http://www.dynomotion.com/Help/StepScreen/VelCmdOnlyHiJerkGraphBig.PNG

KFLOP User Manual 2016

42 | P a g e

which is a force proportional and opposite to the current velocity. Although derivative gain is often
used successfully in a control system, consider using a lead/lag filter which performs in a similar
manner, but doesn't have the undesirable feature of increasing gain at high frequencies.

Tuning Parameters - max limits

KMotion's max limits allow several points in the Servo Flow Diagram to
be clamped, or limited to a specified range. The limits in the flow

diagram are shown as a clamp symbol . This capability is often
useful in controlling how the system responds to extreme situations.

Maximum output limit is used to limit the maximum applied value, in counts, to the output drive. The
output drive may be either one of the on-board PWM outputs or a DAC value that drives an external
amplifier.

Maximum integrator limit is used to restrict the maximum value of the integrator. This effect is often
used to avoid an effect referred to as integrator "wind up". Without any integrator limit, consider the
case where somehow a substantial error is maintained for a significant period of time. For example
turning a motor shaft by hand for several seconds. During this time the integrator would ramp up to
an extremely large value. When the motor shaft was released, it would accelerate at maximum and
overshoot the target by a huge amount until the integrator could ramp back down to a reasonable
value. This often results in a servo slamming into a limit. The maximum integrator limit prevents this
from occurring. Often the main purpose for using an integrator is to overcome static friction in order
to reduce the final error to zero. This usually requires only a small fraction of total output range. In
almost all cases it is of no value to allow the integrator to exceed the maximum output value.

Maximum error limits the maximum value allowed to pass through the servo compensator. The units
are the same as position units. Typically, when a servo loop is operating normally, its following error
is a small value. When some extreme even occurs, such as a sudden large step command, or
possibly a large disturbance the error may become very large. In some cases there may be benefit
to limiting the error to a reasonable value.

http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/AnalogIOScreenKFLOP/AnalogIOScreen.htm#PWMs
http://www.dynomotion.com/Help/AnalogIOScreenKFLOP/AnalogIOScreen.htm#DACs

KFLOP User Manual 2016

43 | P a g e

Tuning Parameters - Motion Profile

The Motion Profile parameters set the maximum allowed velocity (in position
units per second), the maximum allowed acceleration (in position units per
second2), and the maximum allowed jerk (in position units per second3). These
parameters will be utilized for any independent (non coordinated motion) move
command for the axis. The acceleration and jerk also apply to jog commands
(move at continuous velocity) for the axis.

Tuning Parameters - Feed Forward

KMotion's Feed Forward may often be used to dramatically reduce the following
error in a system. See the Servo Flow Diagram to see precisely how it is
implemented. The idea behind feed forward is to observe the velocity and
acceleration of the command signal and anticipate a required output and to apply
it without waiting for an error to develop.

Most motion systems are constructed in manner where some sort of motor force is used to
accelerate a mass. In these cases whenever an acceleration is required a force proportional to the
acceleration will be required to achieve it. Acceleration feed forward may be used to reduce the
amount that the feedback loop must correct. In fact, proper feed forward reduces the requirement
on the feedback from the total force required to accelerate the mass, to only the variation in the
force required to accelerate the mass.

Similarly most servo systems require some amount of force that is proportional to velocity simply to
maintain a constant velocity. This might be due to viscous friction, or possibly motor back emf
(electro motive force). In any case velocity feed forward may be used to reduce the demands of the
feedback loop resulting in smaller following error.

The normal procedure to optimize feed forward is to select plot type - position error, and measure
moves using the Move Command (Step functions should not be used as step functions are
instantaneous changes in position that represent infinite velocity and acceleration).

Note that in the Servo Flow Diagram the feed forward is injected before the final IIR Filter. This
allows any feed forward waveforms to be conditioned by this filter. Feed forward pulses may be
relatively sharp pulses to make rapid accelerations that may often tend to disturb a mechanical
resonance in the system. Usually a system with a sharp resonance will benefit from a notch filter to
improve the stability and performance of the servo loop. By placing the notch filter as the last filter in
the servo loop, the feed forward waveform will also pass through this filter and the result is that the
feed forward will cause less excitation of the mechanism than it would otherwise..

http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm

KFLOP User Manual 2016

44 | P a g e

Tuning Parameters - Dead Band

Dead band is used to apply a different gain to the region near zero than the
rest of the region. Usually either zero gain or a gain much less than 1 is used
within the dead band range. See the Servo Flow Diagram for the exact
location of where the dead band is inserted. Dead band is a means of
introducing "slop" into a system. This usually results in less accuracy and
performance, but may reduce or eliminate limit cycle oscillations while resting

at the target position.

The values shown (range = 0, gain = 1) are used to defeat any
dead band. The chart shows the resulting input/output for range
= 2, gain = 0. The slope of the graph is always 1 outside of the
specified +/- range, and the specified gain with the +/- range.

Measurement

To perform a measurement and display the response, select the time
duration to gather data, and the move or step size to perform, and press
either the Move or Step buttons. If the axis is currently enabled, it will be
disabled, all parameters from all screens will be downloaded, the axis
will be enabled, the move or step will be performed while the data is
gathered, the data will then be uploaded and plotted.

A Move will hold position for a short time, perform a motion of the specified amount from the current
location, pause for a short time, and then a second motion back to the original location.

A Step will hold position for a short time, perform a step of the specified amount from the current
location, pause for a short time, and then a second step back to the original location.

The maximum time that data may be collected is 3.5 seconds (3.5 seconds / 90µs = 38,888 data
points). Note that collecting data at this rate allows zooming while still maintaining high resolution.

http://www.dynomotion.com/Help/ServoFlowDiagram.htm

KFLOP User Manual 2016

45 | P a g e

Axis Control

The Axis Control buttons are present to conveniently disable (Kill), Zero, or Enable
an axis. If the axis becomes unstable (possible due to a gain setting too high), the
Kill button may be used to disable the axis, the gain might then be reduced, and
then the axis may be enabled. The Enable button downloads all parameters from all
screens before enabling the axis in the same manner as the Measurement buttons
described above.

Note for brushless output modes that commutate the motor based on the current position, Zeroing
the position may adversely affect the commutation.

Save/Load Data

The Save/Load Data buttons allow the captured Step Plot to be saved to a text file
and re-loaded at a later time. The text file format also allows the data to be
imported into some other program for display or analysis. The file format consists of
one line of header followed by one line of 5 comma separated values, one line for
each sample. The values are:

1. Sample Number
2. Time, Seconds
3. Command
4. Position
5. Output

Example of data file follows:

Sample,Time,Command,Position,Output
0,0,5,5,-0.3301919
1,9e-005,5,5,-0.3300979
2,0.00018,5,5,-0.3300258
3,0.00027,5,5,-0.3299877
4,0.00036,5,5,-0.3299999
5,0.00045,5,5,-0.3300253
6,0.00054,5,5,-0.3300359
7,0.00063,5,5,-0.3300304
8,0.00072,5,5,-0.3300199
9,0.00081,5,5,-0.3300156
10,0.0009,5,5,-0.3300157
62

. . .

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#Measurement

KFLOP User Manual 2016

46 | P a g e

 Console Screen

Commands
(alphabetical):
3PH<N>=<M> <A>
4PH<N>=<M> <A>
Accel <N>=<A>
ADC<N>
Arc <XC> <YC> <RX> <RY>
<θ0> <dθ> <Z0> <A0> <B0> <C0>
<Z1> <A1> <B1> <C1>
<a> <c> <d> <tF>
ArcXZ <XC> <ZC> <RX> <RZ>
<θ0> <dθ> <Y0> <A0> <B0> <C0>
<Y1> <A1> <B1> <C1>
<a> <c> <d> <tF>
ArcYZ <YC> <ZC> <RY> <RZ>
<θ0> <dθ> <X0> <A0> <B0> <C0>
<X1> <A1> <B1> <C1>
<a> <c> <d> <tF>
ArcHex <XC> <YC> <RX> <RY>
<θ0> <dθ> <Z0> <A0> <B0> <C0>
<Z1> <A1> <B1> <C1>
<a> <c> <d> <tF>
ArcHexXZ<XC> <ZC> <RX> <RZ>
<θ0> <dθ> <Y0> <A0> <B0> <C0>
<Y1> <A1> <B1> <C1>
<a> <c> <d> <tF>
ArcHexYZ <YC> <ZC> <RY> <RZ>
<θ0> <dθ> <X0> <A0> <B0> <C0>
<X1> <A1> <B1> <C1>
<a> <c> <d> <tF>
CheckDone<N>
CheckDoneBuf
CheckDoneGather
CheckDoneXYZA
ClearBit<N>
ClearBitBuf<N>
ClearFlashImage
CommutationOffset<N>=<X>
D<N>=<M>
DAC<N> <M>
DeadBandGain<N>=<M>
DeadBandRange<N>=<M>
DefineCS<X> <Y> <Z> <A>
<C>
Dest<N>=<M>
DisableAxis<N>
Echo <S>
EnableAxis<N>
EnableAxisDest<N> <M>
Enabled<N>
EntryPoint<N> <H>
ExecBuf
ExecTime
Execute<N>
FFAccel<N>=<M>
FFVel<N>=<M>
Flash
GatherMove<N> <M> <L>
GatherStep<N> <M> <L>
GetBitDirection<N>
GetGather <N>
GetGatherDec<N>
GetGatherHex<N> <M>
GetInject<N> <M>
GetPersistDec<N>
GetPersistHex<N>
GetStatus
I<N>=<M>
IIR<N> <M>=<A1> <A2> <B0> <B1>

The Console Screen displays messages from the DSP and the PC. The
Console window retains the last 1000 lines of text. After more than 1000
lines are displayed the earliest messages scroll off into a permanent text file
(LogFile.txt) in the KMotion\Data subdirectory.

To Send a command to the DSP enter the text string in the bottom command
cell and press the Send button.

Selecting the Check box changes from a single command line to
multiple command lines, see below. This allows several commands to be
entered and then easily sent with a single push button.

Multiple commands may be entered on a single line by separating the
commands with a semicolon. For Example:

SetBit46;SetBit47

http://www.dynomotion.com/Help/Cmd.htm#3PH
http://www.dynomotion.com/Help/Cmd.htm#4PH
http://www.dynomotion.com/Help/Cmd.htm#Accel
http://www.dynomotion.com/Help/Cmd.htm#ADC
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcXZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcXZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcYZ
http://www.dynomotion.com/Help/Cmd.htm#ArcYZ
http://www.dynomotion.com/Help/Cmd.htm#ArcYZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcYZ
http://www.dynomotion.com/Help/Cmd.htm#ArcYZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcYZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#ArcHexXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHexXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHexXZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcHexXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHexXZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcHexXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHexYZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHexYZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHexYZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcHexYZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcHexYZ
http://www.dynomotion.com/Help/Cmd.htm#CheckDone
http://www.dynomotion.com/Help/Cmd.htm#CheckDone
http://www.dynomotion.com/Help/Cmd.htm#CheckDoneGather
http://www.dynomotion.com/Help/Cmd.htm#CheckDoneXYZA
http://www.dynomotion.com/Help/Cmd.htm#ClearBit
http://www.dynomotion.com/Help/Cmd.htm#ClearBitBuf
http://www.dynomotion.com/Help/Cmd.htm#ClearFlashImage
http://www.dynomotion.com/Help/Cmd.htm#CommutationOffset
http://www.dynomotion.com/Help/Cmd.htm#D
http://www.dynomotion.com/Help/Cmd.htm#DAC
http://www.dynomotion.com/Help/Cmd.htm#DeadBandGain
http://www.dynomotion.com/Help/Cmd.htm#DeadBandRange
http://www.dynomotion.com/Help/Cmd.htm#DefineCS
http://www.dynomotion.com/Help/Cmd.htm#DefineCS
http://www.dynomotion.com/Help/Cmd.htm#Dest
http://www.dynomotion.com/Help/Cmd.htm#DisableAxis
http://www.dynomotion.com/Help/Cmd.htm#Echo
http://www.dynomotion.com/Help/Cmd.htm#EnableAxis
http://www.dynomotion.com/Help/Cmd.htm#EnableAxisDest
http://www.dynomotion.com/Help/Cmd.htm#Enabled
http://www.dynomotion.com/Help/Cmd.htm#EntryPoint
http://www.dynomotion.com/Help/Cmd.htm#ExecBuf
http://www.dynomotion.com/Help/Cmd.htm#ExecTime
http://www.dynomotion.com/Help/Cmd.htm#Execute
http://www.dynomotion.com/Help/Cmd.htm#FFAccel
http://www.dynomotion.com/Help/Cmd.htm#FFVel
http://www.dynomotion.com/Help/Cmd.htm#Flash
http://www.dynomotion.com/Help/Cmd.htm#GatherMove
http://www.dynomotion.com/Help/Cmd.htm#GatherStep
http://www.dynomotion.com/Help/Cmd.htm#GetBitDirection
http://www.dynomotion.com/Help/Cmd.htm#GetGather
http://www.dynomotion.com/Help/Cmd.htm#GetGatherDec
http://www.dynomotion.com/Help/Cmd.htm#GetGatherHex
http://www.dynomotion.com/Help/Cmd.htm#GetInject
http://www.dynomotion.com/Help/Cmd.htm#GetPersistDec
http://www.dynomotion.com/Help/Cmd.htm#GetPersistHex
http://www.dynomotion.com/Help/Cmd.htm#GetStatus
http://www.dynomotion.com/Help/Cmd.htm#I
http://www.dynomotion.com/Help/Cmd.htm#IIR

KFLOP User Manual 2016

47 | P a g e

<B2>
Inject<N> <F> <A>
InputChan<M> <N>=<C>
InputGain<M> <N>=<G>
InputMode<N>=<M>
InputOffset<M> <N>=<O>
InvDistPerCycle<N>=<X>
Jerk<N>=<J>
Jog<N>=<V>
Kill<N>
Lead<N>=<M>
LimitSwitch<N>=<H>
Linear <X0> <Y0> <Z0> <A0> <B0>
<C0>
<X1> <Y1> <Z1> <A1> <B1> <C1>
<a> <c> <d> <tF>
LinearHex <X0> <Y0> <Z0> <A0>
<B0> <C0>
<X1> <Y1> <Z1> <A1> <B1> <C1>
<a> <c> <d> <tF>
LoadData <H> <N>
LoadFlash<H> <N>
MaxErr<N>=<M>
MaxFollowingError<N>=<M>
MaxI<N> <M>
MaxOutput<N>=<M>
Move<N>=<M>
MoveAtVel<N>=<M> <V>
MoveRel<N>=<M>
MoveRelAtVel<N>=<M> <V>
MoveXYZA <X> <Y> <Z> <A>
OpenBuf
OutputChan<M> <N>=<C>
OutputMode<N>=<M>
P<N>=<M>
Pos<N>=<P>
ProgFlashImage
PWM<N>=<M>
PWMR<N>=<M>
ReadBit<N>
Reboot!
SetBit<N>
SetBitBuf<N>
SetBitDirection<N>=<M>
SetGatherDec <N> <M>
SetGatherHex<N> <M>
SetPersistDec <O> <D>
SetPersistHex <O> <H>
SetStartupThread<N> <M>
SetStateBit<N>=<M>
SetStateBitBuf<N>=<M>
StepperAmplitude<N>=<M>
Vel<N>=<V>
Version
Zero<N>

See the alphabetical list for available commands.

Or see commands grouped by category here.

http://www.dynomotion.com/Help/Cmd.htm#IIR
http://www.dynomotion.com/Help/Cmd.htm#Inject
http://www.dynomotion.com/Help/Cmd.htm#InputChan0
http://www.dynomotion.com/Help/Cmd.htm#InputGain0
http://www.dynomotion.com/Help/Cmd.htm#InputMode
http://www.dynomotion.com/Help/Cmd.htm#InputOffset0
http://www.dynomotion.com/Help/Cmd.htm#InvDistPerCycle
http://www.dynomotion.com/Help/Cmd.htm#Jerk
http://www.dynomotion.com/Help/Cmd.htm#Jog
http://www.dynomotion.com/Help/Cmd.htm#Kill
http://www.dynomotion.com/Help/Cmd.htm#Lead
http://www.dynomotion.com/Help/Cmd.htm#LimitSwitch
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#LoadData
http://www.dynomotion.com/Help/Cmd.htm#LoadFlash
http://www.dynomotion.com/Help/Cmd.htm#MaxErr
http://www.dynomotion.com/Help/Cmd.htm#MaxFollowingError
http://www.dynomotion.com/Help/Cmd.htm#MaxI
http://www.dynomotion.com/Help/Cmd.htm#MaxOutput
http://www.dynomotion.com/Help/Cmd.htm#Move
http://www.dynomotion.com/Help/Cmd.htm#MoveAtVel
http://www.dynomotion.com/Help/Cmd.htm#MoveRel
http://www.dynomotion.com/Help/Cmd.htm#MoveRelAtVel
http://www.dynomotion.com/Help/Cmd.htm#MoveXYZA
http://www.dynomotion.com/Help/Cmd.htm#OpenBuf
http://www.dynomotion.com/Help/Cmd.htm#OutputChan0
http://www.dynomotion.com/Help/Cmd.htm#OutputMode
http://www.dynomotion.com/Help/Cmd.htm#P
http://www.dynomotion.com/Help/Cmd.htm#Pos
http://www.dynomotion.com/Help/Cmd.htm#ProgFlashImage
http://www.dynomotion.com/Help/Cmd.htm#PWM
http://www.dynomotion.com/Help/Cmd.htm#PWMR
http://www.dynomotion.com/Help/Cmd.htm#ReadBit
http://www.dynomotion.com/Help/Cmd.htm#Reboot!
http://www.dynomotion.com/Help/Cmd.htm#SetBit
http://www.dynomotion.com/Help/Cmd.htm#SetBitBuf
http://www.dynomotion.com/Help/Cmd.htm#SetBitDirection
http://www.dynomotion.com/Help/Cmd.htm#SetGatherDec
http://www.dynomotion.com/Help/Cmd.htm#SetGatherHex
http://www.dynomotion.com/Help/Cmd.htm#SetPersistDec
http://www.dynomotion.com/Help/Cmd.htm#SetPersistHex
http://www.dynomotion.com/Help/Cmd.htm#SetStartupThread
http://www.dynomotion.com/Help/Cmd.htm#SetStateBit
http://www.dynomotion.com/Help/Cmd.htm#SetStateBitN=B
http://www.dynomotion.com/Help/Cmd.htm#StepperAmplitude
http://www.dynomotion.com/Help/Cmd.htm#Vel
http://www.dynomotion.com/Help/Cmd.htm#Version
http://www.dynomotion.com/Help/Cmd.htm#Zero
http://www.dynomotion.com/Help/CmdsCategory.htm

KFLOP User Manual 2016

48 | P a g e

Axis Status Screen

The Axis Screen displays Axis Status including:

 Current Commanded Destination
 Current Measured Position
 Whether the axis is currently enabled
 Input Mode
 Output Mode
 Done Status (no independent Move or Jog in progress)
 Current Bar Graph (if current sensing is available for the axis)

Clicking on Enable will enable or disable the axis without downloading any parameter settings to

KFLOP.

KFLOP User Manual 2016

49 | P a g e

KFLOP Summary

Eight-Axis, DSP/FPGA-based Motion Controller

DynoMotion’s KFLOP card combines a 1.2
GFLOP DSP (TMS320C6722), FPGA, USB,
and a PC-based development environment to
create a versatile and programmable motion
solution. Designed for up to eight-axes control,
KFLOP provides advanced control for torque,
speed, and position for any mix of stepper,
DC brushless, and DC brush motors. KFLOP
uses flash memory to store and run multiple-
thread compiled C code on a 1.2 GFLOP
processor with native 64-bit floating point
support for stand-alone operation. A PC
connected with a USB cable can be used for
control and monitoring.

The included PC-based integrated
development environment combines configuration, status, programming, and advanced diagnostic
and tuning tools such as Bode plots and signal filtering. GCode support allows coordinated moves
between axes. Libraries for controlling the KFLOP card via Visual C++ and Visual Basic are included,
as well as a free C compiler. Thread-safe operation allows the IDE to be used in conjunction with a
user application for control and debugging.

The KFLOP packs a lot of IO into its 5.0 x 3.5 in package. KFLOP offers 45 Bi-directional I/O bits,
shared between dedicated IO and user-defined I/O.

http://dynomotion.com, Calabasas, CA. [sales@dynomotion.com]

http://dynomotion.com/

KFLOP User Manual 2016

50 | P a g e

for purchasing KFLOP

1.2 GFLOP Motion Controller

by Dynomotion, Inc.
www.dynomotion.com

Email: support@dynomotion.com

Please download and install the latest software from
http://dynomotion.com/Software/Download.html

The installation will create a Windows™ Start button link to further help and to the KMotion Setup
and Tuning Application.

QuickStart

Remove the KFLOP Board from the anti-static packaging in a static safe environment.

Note: immediately before touching any electronic component, always discharge any static
electricity you may have by touching an earth ground, such as the metal chassis of a PC.

KFLOP may operate powered from the USB by inserting J3. Total power must be < 0.5A for USB
powered operation. Otherwise remove J3 and connect a +5V power supply to the KMotion 4 pin
Molex connector. This connector is the same Pinout as a PC Disk Drive power connector. A PC
power supply makes an excellent low cost power source for KFLOP. The +12V is not required for
operation, it is routed internally through the board to several of the connectors. See the on-line help
section titled Hardware/Connector Description for more information.

Note: KFLOP may at times draw as little as 0.25 Amps from the +5V supply. Some PC power
supplies will not function without a minimum load. In these cases an appropriate power

resistor (~10 ohm 5 Watt) should be added across the +5V. Additionally, most ATX power
supplies require pins 14 and 15 on the main 20 pin power connector to be shorted.

Note: it is NOT recommended to use the same power supply that is powering your PC and
Hard drives to power the KFLOP. Motor noise and power surges have the possibility to

cause damage or loss of data within the PC.

Connect the USB or turn on the +5V supply. Two green LEDs should blink rapidly for a few seconds
(KFLOP is checking if the Host is requesting a Flash Recovery during this time), and then the LEDs
should remain steady.

Now connect a USB cable from KFLOP to your PC and follow the USB Driver instructions below.

http://www.dynomotion.com/
http://dynomotion.com/Software/Download.html

KFLOP User Manual 2016

51 | P a g e

USB Installation

The first time the KFLOP board is connected to a computer's USB port this message should be
displayed near the Windows™ Task Bar.

Shortly thereafter, the New Hardware Wizard Should appear.

Select "Install from a specific location (Advanced)" and select Next.

If you haven't already, download and install the complete KFLOP Software including drivers
available at:

http://dynomotion.com/Software/Download.html

http://dynomotion.com/Software/Download.html

KFLOP User Manual 2016

52 | P a g e

Select: "Don't search. I will choose the driver to install" and click Next

Select: "Have Disk..."

KFLOP User Manual 2016

53 | P a g e

Browse to within the subdirectory where you selected the KFLOP Software to be installed to the
"USB DRIVER" subdirectory.

(If the software was installed into the default subdirectory, the location would be:
C:\KFLOP4xx\USB DRIVER)

Click OK

Select "KFLOP - Motion Controller 4.xx" and slelect Next

KFLOP User Manual 2016

54 | P a g e

If this screen appears select Continue Anyway.

If successful, the above screen should appear. Click Finish.

KFLOP User Manual 2016

55 | P a g e

The KFLOP Board is now ready for use. To verify proper USB connection to the KFLOP Board, use
the Windows™ Start Button to launch the KMotion Application.

KFLOP User Manual 2016

56 | P a g e

At the main tool bar select the "Console" button to Display the Console Screen.

Enter the “Version” command and press the "Send" button to send the ‘Version” command to the
KFLOP Board. The following should be displayed indicating successful communication between the
PC and KFLOP Board.

KFLOP 4.07 Build 09:36:16 Nov 8 2008
KFLOP 4.07
Ready

See the On-Line help for more information on how to connect your motors drives, enter console
script commands, compile and run C Programs, execute G Code, and much more!!!

KFLOP User Manual 2016

57 | P a g e

KFLOP Hardware

Function Parameter Specification

Processor CPU
Memory

TMS320C67-200MHz DSP 1.2GFLOP
32/64-Bit Native Floating Point
FLASH 2 MBytes
SDRAM 16 Mbytes

Interface Host USB 2.0 Full Speed

Connectors I/O General
Purpose
I/O Com
Aux#0 IO
Aux#1 IO
USB
System Power

26 pin Header
8 pin RJ45
16 pin Header
16 pin Header
Type B
Molex 4-pin (Disk drive type)

Servo Loop Sample Rate
Compensation
Feed Forward

90µs
PID + (3) IIR bi-quad Stages/Axis
Acceleration + Velocity

Axis Number
Type

8
MicroStep/Servo/Brush/Brushless/StepDirection

Logic

Supply

Voltage
Max Current
Typical Current

+5V ±10%
2.5A
0.35 A

User I/O Digital
Encoders

45 Gen Purpose LVTTL (24 are 5V Tolerant)
(4) single-ended, 1 MHz

Environment Operating
Temperature
Storage
Temperature
Humidity

0-40º C
0-40º C
20-90% Relative Humidity, non-condensing

Dimensions Length
Width
Height

3.5 inches (89mm)
5.0 inches (127 mm)
0.75inches (19 mm)

KFLOP User Manual 2016

58 | P a g e

KFLOP Software

Function Parameter Specification

User Programs Language
Number
concurrent
Stand alone mode

C
7
Yes

Host

Requirements

OS
Interface

MS Windows™ 2000, MS Windows™
XP
USB 2.0

Interface Library Multi-Thread
Multi-Process
Multi-Board
MS Windows™
VC++
MS Windows™
VB

Yes
Yes
Yes
Supported
Supported

C Compiler TCC67 Included

G Code Interpreter Included

Script Language ASCII Commands Included

Trajectory Planner Coordinated
Motion

4 Axis

Executive

Application

Configuration
Tuning
User Programs
G Code
Command
Console
Status Display

Upload/Download/Save/Load Motor
Config
Move/Step Response, Bode Plot, Calc
Filters
Integrated IDE -
Edit/Compile/Download/Exec
Integrated
ASCII Command Entry - Log Console
Axis/Analog/Digital

KFLOP User Manual 2016

59 | P a g e

Board Layout

KFLOP User Manual 2016

60 | P a g e

KFLOP User Manual 2016

61 | P a g e

Block Diagram

KFLOP User Manual 2016

62 | P a g e

KFLOP - Connector Pinouts

JR1 - +5V Power (regulated +/- 5%)

Typical current = 0.35Amps with no user I/O connected. More current may be required dependent
on the amount of Digital I/O and option boards. +5V @ 2.5A should be more than sufficient under all
conditions. The +12V input is not used internally by the board, but is routed to pins on the JP4, JP6,
and JP7 connectors for the convenience of the user. +5V power is also routed to the same
connectors. 5V power may be applied at whichever connector is more convenient. This connector is
rated for 6.5Amps per connection.

This connector is a standard PC-disk drive power connector which makes it easy to drive the board
with an inexpensive PC power supply.

Under some conditions USB power may be used to avoid requiring an external +5V power supply
connection. USB specifies a maximum of 500ma may be drawn from the USB cable. KFLOP itself
consumes 350ma. If external IO draws less than the remaining 150ma USB supplied power may be
used. To utilize USB power connect Jumper J3 and do not supply +5V into any of the KFLOP
connectors.

KFLOP User Manual 2016

63 | P a g e

JP2 - JTAG

This connector is only used for advanced debugging using an XDS510 JTAG type in circuit
emulator. A small amount of regulated 3.3V (<0.5 Amp) is available on this connector if needed for
external use.

KFLOP User Manual 2016

64 | P a g e

JP7 - Digital IO

18 LVTTL bi-directional digital I/O, and +5, +15, -15 power supply outputs. Many Digital I/O bits are
pre-defined as encoder, home, or limit inputs (see table below) but if not required for the particular
application may be used as general purpose I/O. Digital Outputs may sink/source 10 ma. Digital I/O
is LVTTL (3.3V) but is 5 V tolerant.

Caution! This connector contains 12V signals. Shorts to low voltage pins will cause
permanent damage to the board!

KFLOP User Manual 2016

65 | P a g e

KFLOP User Manual 2016

66 | P a g e

Pin Name Description

1 VDD33 +3.3 Volts Output

2 VDD33 +3.3 Volts Output

3 VDD12 +12 Volts Output

4 RESET# Power up Reset (low true) output

5 IO44 Gen Purpose LVTTL I/O (3.3V Only)

6 IO45 Gen Purpose LVTTL I/O (3.3V Only)

7 IO0 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 0 Encoder Input Phase A

8 IO1 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 0 Encoder Input Phase B

9 IO2 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 1 Encoder Input Phase A

10 IO3 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 1 Encoder Input Phase B

11 IO4 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 2 Encoder Input Phase A

12 IO5 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 2 Encoder Input Phase B

13 IO6 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 3 Encoder Input Phase A

14 IO7 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 3 Encoder Input Phase B

15 IO8 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 0 Home (or Step 0 output)

16 IO9 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 1 Home (or Dir 0 output)

17 IO10 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 2 Home (or Step 1 output)

18 IO11 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 3 Home (or Dir 1 output)

19 IO12 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 0 + Limit (or Step 2 output)

20 IO13 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 0 - Limit (or Dir 2 output)

21 IO14 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 1 + Limit (or Step 3 output)

22 IO15 Gen Purpose LVTTL I/O (5V Tolerant) or Axis 1 - Limit (or Dir 3 output)

23 VDD5 +5 Volts Output

24 VDD5 +5 Volts Output

25 GND Digital Ground

26 GND Digital Ground

Note: Homes and Limits are recommendations only. Any input may be used.

KFLOP User Manual 2016

67 | P a g e

JP4 - Aux Connector #0

Auxiliary connector which supplies power, reset, and 10 digital I/O (LVTTL 3.3V only) which is
normally connected to optional expansion daughter boards (ie. SnapAmp 1000). If no expansion
module is required, these digital I/O may be used for general purpose use. The first 8 IO (IO16-
IO23) contain 150ohm termination resistors (pull downs).

KFLOP User Manual 2016

68 | P a g e

Pin Name Description

1 VDD5 +5 Volts Output

2 VDD12 +12 Volts Output

3 VDD33 +3.3 Volts Output

4 RESET# Power up Reset (low true) output

5 IO16 Gen Purpose LVTTL I/O (3.3V Only)

6 IO17 Gen Purpose LVTTL I/O (3.3V Only)

7 IO18 Gen Purpose LVTTL I/O (3.3V Only)

8 GND Digital Ground

9 GND Digital Ground

10 IO19 Gen Purpose LVTTL I/O (3.3V Only)

11 IO20 Gen Purpose LVTTL I/O (3.3V Only)

12 IO21 Gen Purpose LVTTL I/O (3.3V Only)

13 IO22 Gen Purpose LVTTL I/O (3.3V Only)

14 IO23 Gen Purpose LVTTL I/O (3.3V Only)

15 IO24 Gen Purpose LVTTL I/O (3.3V Only)

16 IO25 Gen Purpose LVTTL I/O (3.3V Only)

JP6 - Aux Connector #1

Auxiliary connector which supplies power, reset, and 10 digital I/O (LVTTL 3.3V only) which is
normally connected to optional expansion daughter boards (ie. SnapAmp 1000). If no expansion
module is required, these digital I/O may be used for general purpose use. The first 8 IO (IO26-
IO33) contain 150ohm termination resistors (pull downs).

KFLOP User Manual 2016

69 | P a g e

Pin Name Description

1 VDD5 +5 Volts Output

2 VDD12 +12 Volts Output

3 VDD33 +3.3 Volts Output

4 RESET# Power up Reset (low true) output

5 IO26 Gen Purpose LVTTL I/O (3.3V Only) or PWM0 out

6 IO27 Gen Purpose LVTTL I/O (3.3V Only) or PWM1 out

7 IO28 Gen Purpose LVTTL I/O (3.3V Only) or PWM2 out

8 GND Digital Ground

9 GND Digital Ground

10 IO29 Gen Purpose LVTTL I/O (3.3V Only) or PWM3 out

11 IO30 Gen Purpose LVTTL I/O (3.3V Only) or PWM4 out

12 IO31 Gen Purpose LVTTL I/O (3.3V Only) or PWM5 out

13 IO32 Gen Purpose LVTTL I/O (3.3V Only) or PWM6 out

14 IO33 Gen Purpose LVTTL I/O (3.3V Only) or PWM7 out

15 IO34 Gen Purpose LVTTL I/O (3.3V Only)

16 IO35 Gen Purpose LVTTL I/O (3.3V Only)

KFLOP User Manual 2016

70 | P a g e

JP5 - GPIO #1 / LV Differential Connector

Low Voltage Differential RJ45 Connector. This connector is intended for high-speed low-voltage
differential communication over a twisted pair cable use. However it may also be used as 8 General
Purpose digital I/O (LVTTL 5V Tolerant)

KFLOP User Manual 2016

71 | P a g e

Pin Name Description

1 IO36
Gen Purpose LVTTL I/O (5V Tolerant) or (or Step 4 output) or (Axis 4 Encoder Input Phase
A)

2 IO37 Gen Purpose LVTTL I/O (5V Tolerant) or (or Dir 4 output) or (Axis 4 Encoder Input Phase B)

3 IO38
Gen Purpose LVTTL I/O (5V Tolerant) or (or Step 5 output) or (Axis 5 Encoder Input Phase
A)

4 IO39 Gen Purpose LVTTL I/O (5V Tolerant) or (or Dir 5 output) or (Axis 5 Encoder Input Phase B)

5 IO40
Gen Purpose LVTTL I/O (5V Tolerant) or (or Step 6 output) or (Axis 6 Encoder Input Phase
A)

6 IO41 Gen Purpose LVTTL I/O (5V Tolerant) or (or Dir 6 output) or (Axis 6 Encoder Input Phase B)

7 IO42
Gen Purpose LVTTL I/O (5V Tolerant) or (or Step 7 output) or (Axis 7 Encoder Input Phase
A)

8 IO43 Gen Purpose LVTTL I/O (5V Tolerant) or (or Dir 7 output) or (Axis 7 Encoder Input Phase B)

KFLOP User Manual 2016

72 | P a g e

Analog I/O Status Screen

KFLOP User Manual 2016

73 | P a g e

The Analog I/O Status Screen displays various analog measurements and commands including:

 Kanalog DAC Settings
 Kanalog ADC Readings
 SnapAmp Measured current flow per motor coil
 SnapAmp Power Supply Voltages
 SnapAmp Mosfet Temperatures
 SnapAmp PWM power amp settings

KFLOP itself has no Analog capability and when operated alone with no option cards the Analog I/O
Screen will not display. If one or two SnapAmp option boards are installed and checked on the
option menu, tabs will allow display of SnapAmp Status. Current measurement for each full bridge
(motor coil), Power supply voltage for each side, Temperature of each side, and PWM setting for
each PWM. If Kanalog is installed and checked on the option menu a tab will allow displaying
Kanalog Analog Status.

PWM's

The state of each SnapAmp's four PWM (Pulse Width Modulators) are displayed in the top right
area of the status screen. The PWM's are connected to Full Bridge Drivers to allow direct control of
various motors or loads. See the description of KMotion's Power Amplifiers and PWM's for details.
The PWM's may operate independently to drive a full bridge driver, or they may function as a pair of
PWM's connected to a pair of Full Bridge drivers to drive a 4 phase stepper motor or a 3 phase
load.

PWMs may be assigned to an axis by changing the OutputChan0 and OutputChan1 parameters for
an axis. Only consecutive even and odd PWMS may be paired to drive a 3 or 4 phase phase load.

http://www.dynomotion.com/Help/PWM_Description/PWM_Description.htm
http://www.dynomotion.com/Help/PWM_Description/PWM_Description.htm#3_Phase_mode
http://www.dynomotion.com/Help/PWM_Description/PWM_Description.htm#3_Phase_mode

KFLOP User Manual 2016

74 | P a g e

There are several possible modes for each PWM channels:

 Normal Independent
 Recirculating Independent
 3 Phase - paired
 Current Feedback

If a PWM channel is operating in Normal mode, the PWM channel status will show the value in
counts (-255 ... +255) and the percent of full scale.

If a PWM channel is operating in Recirculating mode, the PWM channel status will show the value
in counts (-511 ... +511), followed by an "R", and the percent of full scale.

A PWM channel may also operate in current loop mode. In current loop mode the PWM duty cycle
is automatically adjusted in order to maintain the commanded current. The PWM channel status will
show the command value in counts (-4095 ... +4095), followed by a "C", and the percent of full
scale.

If a pair of PWM channels is operating in 3 Phase mode, the PWM channel status will show the
value in counts (-230 ... 230) after the first PWM channel and the phase angle in degrees after
second PWM channel.

The example status below shows PWM channels 8 and 9 operating in 3 phase mode, PWM channel
10 operating in Normal mode, and PWM channels 11 operating in Recirculating mode.

KFLOP User Manual 2016

75 | P a g e

Digital I/O Screen

KFLOP User Manual 2016

76 | P a g e

KFLOP User Manual 2016

77 | P a g e

KFLOP User Manual 2016

78 | P a g e

KFLOP User Manual 2016

79 | P a g e

The Digital I/O Screen displays and allows changes to the current state of KFLOP digital I/O bits.
Digital IO bits are present on the KFLOP as well as any additional option cards (such as with two
SnapAmps or Kanalog as shown above). IO bits are numbered 0-167.

KMotion has a number of digital I/O bits that may be used as GPIO (General Purpose Inputs or
Outputs) or as specific dedicated functions (ie. encoder inputs). There are 46 bits that may be
utilized as GPIO (bits 0 - 45). Each bit may be independently defined as either an input or an output.
On Power UP KMotion defines all I/O as inputs by default. Any bit may be configured as an output
by checking the corresponding box in the "Output" columns. Alternately, the bits may be configured
by a C program running within the KMotion (See SetBitDirection()) or by Script commands (See
SetBitDirection) sent to the KMotion.

KFLOP bits 0-15 are connected to the JP7 connector normally which may be used to connect to
auxiliary option boards such as Kanalog. These bits are available for User use if no option cards are
requiring them in the system If they are used to communicate to an option board, care should be
taken to not issue any User IO commands to these bits.

http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm#SetBitDirection
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#SETBITDIRECTION

KFLOP User Manual 2016

80 | P a g e

KFLOP bits 16 - 25 are connected to the Aux#0 connector normally used as a high-speed
communication bus to connect to auxiliary option boards such as SnapAmps. These bits are
available for User use if no option cards are requiring them in the system. If they are used to
communicate to an option board, care should be taken to not issue any User IO commands to these
bits.

The State of each I/O bit may be observed in the corresponding checkbox under the "State"
columns. If the bit is defined as an output, clicking on the "State" checkbox will toggle the bit.
Alternately, the bits may be read, set, or cleared by a C program running within the KMotion (See
ReadBit(), SetBit(), ClearBit(), or SetStateBit()) or by Script commands (See ReadBit, SetBit,
ClearBit, or SetStateBit) sent to the KMotion.

Additionally, buffered commands may change the state of Digital I/O bits. Buffered I/O commands
are I/O commands that are inserted into the coordinated motion buffer. When it is required that I/O
bits be changed at exact times within a motion sequence, buffered I/O commands may be inserted
into the motion buffer (see SetBitBuf, ClearBitBuf, and SetStateBitBuf). In this case the I/O
commands occur when they are encountered within the motion sequence. The KMotion GCode
interpreter allows buffered I/O commands to be inserted within motion sequences by using a special
form of GCode comment (See buffered GCode Commands).

See the KFLOP Hardware Connector Descriptions, SnapAmp Hardware Connector Descriptions, or
Kanalog HardwareConnector Descriptions for which IO bits are connected to the various
connectors.

Caution: Shorting High Voltage (greater than 3.3V or 5V depending on pin tolerance) to any
Digital I/O bit will be likely to cause permanent board damage.

Digital I/O bits 46 and 47 are dedicated to the control of the two LED's on KFLOP. These two
outputs are configured as outputs and tuned on when KFLOP powers up. The are available for use
as User status if desired.

http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm#ReadBit
http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm#SetBit
http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm#ClearBit
http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm#SetStateBit
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#READBIT
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#SETBIT
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#CLEARBIT
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#SETSTATEBIT
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#SETBITBUF
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#CLEARBITBUF
http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm#SETSTATEBITBUF
http://www.dynomotion.com/Help/GCodeScreen/GCodeScreen.htm#BUF
http://www.dynomotion.com/Help/SchematicsKFLOP/ConnectorsKFLOP.htm
http://www.dynomotion.com/Help/SchematicsSnap/SnapAmpConnectors.htm
http://www.dynomotion.com/Help/SchematicsKanalog/ConnectorsKanalog.htm

KFLOP User Manual 2016

81 | P a g e

KFLOP Functional Diagram

KFLOP User Manual 2016

82 | P a g e

Virtual COM Port Driver Installation

First install KFLOP normally using our USB Drivers. When successful there should be a KFLOP

entry in Device manager as shown below

KFLOP User Manual 2016

83 | P a g e

Now select “Properties” – “Advanced” – “Load VCP” (Virtual Com Port). Press OK.

KFLOP User Manual 2016

84 | P a g e

Then unplug/re-plug KFLOP. There should now be a USB Serial Port – but missing the driver

KFLOP User Manual 2016

85 | P a g e

On USB Serial Port - right click – “Update Driver”

Select “Browse my computer”

KFLOP User Manual 2016

86 | P a g e

Then “Let me pick …”

KFLOP User Manual 2016

87 | P a g e

Select Device type as “Ports”

KFLOP User Manual 2016

88 | P a g e

FTDI drivers should be pre-installed with Windows. Select FTDI and then latest USB Serial Port
Version

KFLOP User Manual 2016

89 | P a g e

Manufacturer FTDI – USB Serial Port 2.8.2.0 (or other?)

We have a different manufacturer ID so you get this warning – choose “Yes”

KFLOP User Manual 2016

90 | P a g e

Installation should have been successful.

KFLOP User Manual 2016

91 | P a g e

It should now work, but if you need to change the COM port number, do the following:

KFLOP User Manual 2016

92 | P a g e

Right Click “Properties” – “Port Settings”

KFLOP User Manual 2016

93 | P a g e

Select “Advanced”

KFLOP User Manual 2016

94 | P a g e

Change to other COM port if necessary (COM2)

KFLOP User Manual 2016

95 | P a g e

To test download and install a serial com program like Tera Term from:

http://ttssh2.sourceforge.jp

Run it and select “Serial” and the Com port you defined

http://ttssh2.sourceforge.jp/

KFLOP User Manual 2016

96 | P a g e

Type “Version” and KFLOP should respond

KFLOP User Manual 2016

97 | P a g e

Servo Flow Diagram

KFLOP User Manual 2016

98 | P a g e

Driver Library Routines

KMotion Quick

Reference KMotionDLL

Send Commands

WriteLine
WriteLineReadLine

ReadLineTimeOut

Board Locks

WaitToken
KMotionLock
ReleaseToken
Failed

Console

ServiceConsole
SetConsoleCallback

Coff Loader

LoadCoff

Compiler

CompileAndLoadCoff

USB

ListLocations

CKMotionDLL(int board);

Creates a CKMotionDLL object to be used to communicate to a specific board.

board

specifies which board in the system the object is associated with

int WriteLine(const char *s);

Writes a null terminated string of characters to a specified KMotion Board.
There is no wait for any response.

Return Value

0 if successful, non-zero if unsuccessful (invalid board specified)

Parameters

s

Null terminated string to send

Example
#include "KMotionDLL.h"
CKMotionDLL KM;
if (KM.WriteLine(0, "Move0=1000") MyError();

int WriteLineReadLine(const char *s, char *response);

Writes a null terminated string of characters to a specified KMotion Board.
Waits for a response string. This command is thread safe. It waits for the
token for the specified board, sends the command, waits for the response,

http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#WriteLine
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#WriteLineReadLine
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#ReadLineTimeOut
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#WaitToken
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#KMotionLock
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#ReleaseToken
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#Failed
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#ServiceConsole
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#SetConsoleCallback
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#LoadCoff
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#CompileAndLoadCoff
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#ListLocations

KFLOP User Manual 2016

99 | P a g e

then releases the board.

Return Value

0 if successful, non-zero if unsuccessful (invalid board specified, timeout
on the response)

Parameters

s

Null terminated string to send

response

Buffer to receive the null terminated string received as response

Example
#include "KMotionDLL.h"
CKMotionDLL KM;
char resp[256];
while
{
 if (KM.WriteLineReadLine(0, "CheckDone0",resp)

MyError();

 if (strcmp(resp,"1")==0) break;

}

int ReadLineTimeOut(char *buf, int TimeOutms);

Waits for a response string from a previously issued command. Note in a
multi-process or multi thread environment the KMotion board should be
locked prior to issuing a command that has a response(s), Otherwise there
is a possibility that another process or thread may receive the expected
response.

Return Value

0 if successful, non-zero if unsuccessful (invalid board specified, timeout
on the response)

KFLOP User Manual 2016

100 | P a g e

Parameters

buf

Buffer to receive the Null terminated string received as response

TimeOutms

Amount of time to receive a response

Example

#include "KMotionDLL.h"
CKMotionDLL KM(0);
char resp1[256];

char resp2[256];

char resp3[256];

// first get the token for the board to allow uninterrupted access

if (KM.WaitToken()!=KMOTION_LOCKED) MyError();

// tell the board to send 24 (32 bit) words at offset 0

if (KM.WriteLine("GetGatherHex 0 24")) MyError();

// receive the data (8 hex words per line)

if (KM.ReadLineTimeout(resp1)) MyError();

if (KM.ReadLineTimeout(resp2)) MyError();

if (KM.ReadLineTimeout(resp3)) MyError();

// release our access to the board

KM.ReleaseToken();

int WaitToken();

Waits until the token for the specified KMotion board can be obtained. Call
this function whenever uninterrupted access to a KMotion board is
required. For example before a command where several lines of response
will be returned. Release the token as quickly as possible by calling the
ReleaseToken function as all other access to the locked board will be
blocked until released.

http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#ReleaseToken

KFLOP User Manual 2016

101 | P a g e

Return Value

0 if successful, non-zero if unsuccessful (invalid board specified)

Parameters

none

Example

#include "KMotionDLL.h"
CKMotionDLL KM(0);
char resp1[256];

char resp2[256];

char resp3[256];

// first get the token for the board to allow uninterrupted access

if (KM.WaitToken()!=KMOTION_LOCKED) MyError();

// tell the board to send 24 (32 bit) words at offset 0

if (KM.WriteLine("GetGatherHex 0 24")) MyError();

// receive the data (8 hex words per line)

if (KM.ReadLineTimeout(resp1)) MyError();

if (KM.ReadLineTimeout(resp2)) MyError();

if (KM.ReadLineTimeout(resp3)) MyError();

// release our access to the board

KM.ReleaseToken();

int KMotionLock();

Attempts to obtain the token of the specified KMotion board.. Call this
function whenever uninterrupted access to a KMotion board is required.
For example before a command where several lines of response will be
returned. Release the token as quickly as possible by calling the
ReleaseToken function as all other access to the locked board will be
blocked until released. This function is similar to the WaitToken function,
except that it returns immediately (instead of waiting) if the board is already
locked.

http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#ReleaseToken
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#WaitToken

KFLOP User Manual 2016

102 | P a g e

Return Value

KMOTION_LOCKED=0, // (and token is locked) if KMotion is available for
use

KMOTION_IN_USE=1 // if already in use

KMOTION_NOT_CONNECTED=2 // if error or not able to connect

Parameters

none

Example

#include "KMotionDLL.h"

CKMotionDLL KM(0);

char resp1[256];

char resp2[256];

char resp3[256];

int result;

// first get the token for the board to allow uninterrupted access

do

{

 result = KM.KMotionLock();

 if (result == KMOTION_NOT_CONNECTED) MyError();

 if (result == KMOTION_IN_USE) DoOtherProcessing();

} while(result != KMOTION_LOCKED)

// tell the board to send 24 (32 bit) words at offset 0

if (KM.WriteLine("GetGatherHex 0 24")) MyError();

// receive the data (8 hex words per line)

if (KM.ReadLineTimeout(resp1)) MyError();

if (KM.ReadLineTimeout(resp2)) MyError();

if (KM.ReadLineTimeout(resp3)) MyError();

// release our access to the board

KM.ReleaseToken();

KFLOP User Manual 2016

103 | P a g e

void ReleaseToken();

Releases the previously obtained token of the specified KMotion board.
See WaitToken and LockKMotion functions. The token should always be
released as quickly as possible as all other access to the locked board will
be blocked until released.

Return Value

none - the function cannot fail

Parameters

none

specifies which board in the system the command applies to

Example

#include "KMotionDLL.h"
CKMotionDLL KM(0);

char resp1[256];

char resp2[256];

char resp3[256];

int result;

// first get the token for the board to allow uninterrupted access

do

{

 result = KM.KMotionLock();

 if (result == KMOTION_NOT_CONNECTED) MyError();

 if (result == KMOTION_IN_USE) DoOtherProcessing();

} while(result != KMOTION_LOCKED)

// tell the board to send 24 (32 bit) words at offset 0

if (KM.WriteLine("GetGatherHex 0 24")) MyError();

// receive the data (8 hex words per line)

if (KM.ReadLineTimeout(resp1)) MyError();

if (KM.ReadLineTimeout(resp2)) MyError();

if (KM.ReadLineTimeout(resp3)) MyError();

http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#WaitToken
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#KMotionLock

KFLOP User Manual 2016

104 | P a g e

// release our access to the board

KM.ReleaseToken();

int Failed();

This function should be called whenever an error is detected with a
KMotion board. This function disconnects the driver, flags the board as
disconnected, and displays the error message shown below. A user
program may typically detect a timeout error or invalid data error if the
KMotion board is powered down or unplugged while communication is in
progress. Calling this function will force any subsequent attempts to access
the board to wait for a board to be connected, re-connect, flush any
buffers, etc...

"Read Failed - Auto Disconnect"

Return Value

always 0 - the function cannot fail

Parameters

none

Example

#include "KMotionDLL.h"
CKMotionDLL KM(0);

if (KM.KMotionLock() == KMOTION_LOCKED) // see if we can get access

{

 // upload bulk status

 if (UploadStatus())

 {

 // error reading status

 KM.Failed();

 }

 KM.ReleaseToken();
}

 int LoadCoff(int Thread, const char *Name, bool

KFLOP User Manual 2016

105 | P a g e

PackToFlash);

This function downloads a compiled C program to the memory of the
specified KMotion board.

C Programs that run in the KMotion Board are normally compiled using
the included and integrated compiler in the KMotion Application. Using
the KMotion Application the user's C Program should be loaded into a
selected thread and compiled. This will automatically generate a COFF
executable with the same name and in the same directory as the C Source
code, but with a .out extension. It is the users responsibility to keep track
of which thread the COFF executable was compiled to execute in.

The downloaded code may then be executed by issuing the "Execute"
command

Return Value

returns 0 - if successful

Parameters

Thread

KMotion Thread that the program should be loaded into

Name

Filename of coff file to download

PackToFlash

Internal system command always specify as false

Example

#include "KMotionDLL.h"

CKMotionDLL KM(0);

unsigned int EntryPoint;

KFLOP User Manual 2016

106 | P a g e

if (KM.LoadCoff(1, "C:\\test.out", false)) return 1;

KM.WriteLine("Execute 0");

int ServiceConsole();

Services the KMotion Console data stream. The Console is a place where
all unsolicited data, such as errors, or data "Printed" by user programs
goes to. In between processing commands, KMotion uploads any
unsolicited data it may have up to the host. The KMotionDLL driver buffers
this data until some process declares itself as a Console Handler (See
SetConsoleCallback) and makes calls to this function ServiceConsole.

This function should be called at regular intervals. If console data is
available a call back to the Console Handler will occur with one line of data.

Return Value

returns 0 - if successful

Parameters

none

Example

#include "KMotionDLL.h"
CKMotionDLL KM(0);

int ConsoleHandler(const char *buf)

{

 MyLogData(buf);

 return 0;

}

KM.SetConsoleCallback(ConsoleHandler);

KM.ServiceConsole();

int SetConsoleCallback(CONSOLE_HANDLER *ch);

Sets the user provided console callback function.

KFLOP User Manual 2016

107 | P a g e

Return Value

returns 0 - if successful

Parameters

ch

name of console handler function

Example

#include "KMotionDLL.h"
CKMotionDLL KM(0);

int ConsoleHandler(const char *buf)

{

 MyLogData(buf);

 return 0;

}

.

.

.

KM.SetConsoleCallback(ConsoleHandler);

KM.ServiceConsole();

int CompileAndLoadCoff(const char *Name, int Thread);

or
int CompileAndLoadCoff(const char *Name, int Thread,

char *Err, int MaxErrLen);

Compiles the specified C Program file, downloads the object code to the
specified Thread space, and sets the Entry Point, for the specified thread.
Two versions of the function are supplied; one returns any error messages,
the other does not.

The downloaded code may then be executed by issuing the Execute
command.

Return Value

http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm
http://www.dynomotion.com/Help/Cmd.htm#Execute

KFLOP User Manual 2016

108 | P a g e

returns 0 - if successful

Parameters

Name

Filename of C Program to compile and download

Thread

Thread number where the program is to be compiled for and downloaded

into. Valid range 1...7.

Err

Caller's supplied buffer for any error messages

MaxErrLen

Length of caller's supplied buffer for any error messages

Example

#include "KMotionDLL.h"
CKMotionDLL KMotion;
if (KM.CompileAndLoadCoff(0, "C:\\MyProgram.c", 1)

MyError();
if (KM.WriteLine(0, "Execute1") MyError();

int ListLocations(int *nlocations, int *list);

Returns the number of currently connected KMotion boards and a list of
their USB location identifiers

Return Value

KFLOP User Manual 2016

109 | P a g e

returns 0 - if successful

Parameters

nlocations

pointer to integer where the number of locations should be returned

List

pointer to array to be filled in with the list of USB location identifiers

Example

#include "KMotionDLL.h"
CKMotionDLL KM;
int n_boards;
int BoardList[256];
if (KM.ListLocations(&n_boards, BoardList) MyError();

KFLOP User Manual 2016

110 | P a g e

Script Commands

Commands (by category):

Parameters

Accel <N>=<A>
BacklashAmount <N>=<A>
BacklashMode <N>=<M>
BacklashRate <N>=<R>
CommutationOffset <N>=<X>
D<N>=<M>
DeadBandGain<N>=<M>
DeadBandRange<N>=<M>
Dest<N>=<M>
FFAccel<N>=<M>
FFVel <N>=<M>
I<N>=<M>
IIR<N> <M>=<A1> <A2> <B0>
<B1> <B2>
InputChan<M> <N>=<C>
InputGain<M> <N>=<G>
InputMode<N>=<M>
InputOffset<M> <N>=<O>
InvDistPerCycle<N>=<X>
Jerk<N>=<J>
Lead<N>=<M>
LimitSwitch<N>=<H>
MasterAxis<N>=<M>
MaxErr<N>=<M>
MaxFollowingError<N>=<M>
MaxI<N> <M>
MaxOutput<N>=<M>
OutputChan<M> <N>=<C>
OutputGain<N>=<G>
OutputOffset<N>=<O>
OutputMode<N>=<M>
P<N>=<M>
Pos<N>=<P>
SlaveGain<N>=<G>
SoftLimitNeg<N>=<G>

SoftLimitPos<N>=<G>

StepperAmplitude<N>=<M>
Vel<N>=<V>

I/O Commands/Status

ADC<N>
ClearBit<N>
ClearBitBuf<N>
DAC<N> <M>
GetBitDirection<N>
ReadBit<N>
SetBit<N>
SetBitBuf<N>
SetBitDirection<N>=<M>
SetStateBit<N>=<M>
SetStateBitBuf<N>=<M>
WaitBitBuf<N>

WaitNotBitBuf<N>

Output Stage

3PH<N>=<M> <A>
4PH<N>=<M> <A>
PWM<N>=<M>
PWMC<N>=<M>
PWMR<N>=<M>

Gather Commands

CheckDoneGather
GatherMove<N> <M> <L>
GatherStep<N> <M> <L>
GetGather <N>
GetGatherDec<N>
GetGatherHex<N> <M>
GetInject<N> <M>
Inject<N> <F> <A>
SetGatherDec <N> <M>
SetGatherHex<N> <M>
FLASH Commands
ClearFlashImage
Flash
LoadFlash<H> <N>
ProgFlashImage

Motion Commands

Arc <XC> <YC> <RX> <RY>
<θ0> <dθ> <Z0> <A0> <B0>
<C0>
<Z1> <A1> <B1> <C1>
<a> <c> <d> <tF>
ArcXZ <XC> <ZC> <RX>
<RZ>
<θ0> <dθ> <Y0> <A0> <B0>
<C0>
<Y1> <A1> <B1> <C1>
<a> <c> <d> <tF>
ArcYZ <YC> <ZC> <RY>
<RZ>
<θ0> <dθ> <X0> <A0> <B0>
<C0>
<X1> <A1> <B1> <C1>
<a> <c> <d> <tF>
ArcHex <XC> <YC> <RX>
<RY>
<θ0> <dθ> <Z0> <A0> <B0>
<C0>
<Z1> <A1> <B1> <C1>
<a> <c> <d> <tF>
ArcHexXZ<XC> <ZC> <RX>
<RZ>
<θ0> <dθ> <Y0> <A0> <B0>
<C0>
<Y1> <A1> <B1> <C1>
<a> <c> <d> <tF>
ArcHexYZ <YC> <ZC> <RY>
<RZ>
<θ0> <dθ> <X0> <A0> <B0>
<C0>
<X1> <A1> <B1> <C1>
<a> <c> <d> <tF>
BegRapidBuf
CheckDone<N>
CheckDoneBuf
CheckDoneXYZA
ConfigSpindle <T> <A> <U>
<W> <C>
DefineCS <X> <Y> <Z>

http://www.dynomotion.com/Help/Cmd.htm#Accel
http://www.dynomotion.com/Help/Cmd.htm#BacklashAmount
http://www.dynomotion.com/Help/Cmd.htm#BacklashMode
http://www.dynomotion.com/Help/Cmd.htm#BacklashRate
http://www.dynomotion.com/Help/Cmd.htm#CommutationOffset
http://www.dynomotion.com/Help/Cmd.htm#D
http://www.dynomotion.com/Help/Cmd.htm#DeadBandGain
http://www.dynomotion.com/Help/Cmd.htm#DeadBandRange
http://www.dynomotion.com/Help/Cmd.htm#Dest
http://www.dynomotion.com/Help/Cmd.htm#FFAccel
http://www.dynomotion.com/Help/Cmd.htm#FFVel
http://www.dynomotion.com/Help/Cmd.htm#I
http://www.dynomotion.com/Help/Cmd.htm#IIR
http://www.dynomotion.com/Help/Cmd.htm#IIR
http://www.dynomotion.com/Help/Cmd.htm#InputChan0
http://www.dynomotion.com/Help/Cmd.htm#InputGain0
http://www.dynomotion.com/Help/Cmd.htm#InputMode
http://www.dynomotion.com/Help/Cmd.htm#InputOffset0
http://www.dynomotion.com/Help/Cmd.htm#InvDistPerCycle
http://www.dynomotion.com/Help/Cmd.htm#Jerk
http://www.dynomotion.com/Help/Cmd.htm#Lead
http://www.dynomotion.com/Help/Cmd.htm#LimitSwitch
http://www.dynomotion.com/Help/Cmd.htm#MasterAxis
http://www.dynomotion.com/Help/Cmd.htm#MaxErr
http://www.dynomotion.com/Help/Cmd.htm#MaxFollowingError
http://www.dynomotion.com/Help/Cmd.htm#MaxI
http://www.dynomotion.com/Help/Cmd.htm#MaxOutput
http://www.dynomotion.com/Help/Cmd.htm#OutputChan0
http://www.dynomotion.com/Help/Cmd.htm#OutputGain
http://www.dynomotion.com/Help/Cmd.htm#OutputOffset
http://www.dynomotion.com/Help/Cmd.htm#OutputMode
http://www.dynomotion.com/Help/Cmd.htm#P
http://www.dynomotion.com/Help/Cmd.htm#Pos
http://www.dynomotion.com/Help/Cmd.htm#SlaveGain
http://dynomotion.com/Help/Cmd.htm#SoftLimitNeg
http://dynomotion.com/Help/Cmd.htm#SoftLimitPos
http://www.dynomotion.com/Help/Cmd.htm#StepperAmplitude
http://www.dynomotion.com/Help/Cmd.htm#Vel
http://www.dynomotion.com/Help/Cmd.htm#ADC
http://www.dynomotion.com/Help/Cmd.htm#ClearBit
http://www.dynomotion.com/Help/Cmd.htm#ClearBitBuf
http://www.dynomotion.com/Help/Cmd.htm#DAC
http://www.dynomotion.com/Help/Cmd.htm#GetBitDirection
http://www.dynomotion.com/Help/Cmd.htm#ReadBit
http://www.dynomotion.com/Help/Cmd.htm#SetBit
http://www.dynomotion.com/Help/Cmd.htm#SetBitBuf
http://www.dynomotion.com/Help/Cmd.htm#SetBitDirection
http://www.dynomotion.com/Help/Cmd.htm#SetStateBit
http://www.dynomotion.com/Help/Cmd.htm#SetStateBitN=B
http://dynomotion.com/Help/Cmd.htm#WaitBitBuf
http://dynomotion.com/Help/Cmd.htm#WaitNotBitBuf
http://www.dynomotion.com/Help/Cmd.htm#3PH
http://www.dynomotion.com/Help/Cmd.htm#4PH
http://www.dynomotion.com/Help/Cmd.htm#PWM
http://www.dynomotion.com/Help/Cmd.htm#PWMC
http://www.dynomotion.com/Help/Cmd.htm#PWMR
http://www.dynomotion.com/Help/Cmd.htm#CheckDoneGather
http://www.dynomotion.com/Help/Cmd.htm#GatherMove
http://www.dynomotion.com/Help/Cmd.htm#GatherStep
http://www.dynomotion.com/Help/Cmd.htm#GetGather
http://www.dynomotion.com/Help/Cmd.htm#GetGatherDec
http://www.dynomotion.com/Help/Cmd.htm#GetGatherHex
http://www.dynomotion.com/Help/Cmd.htm#GetInject
http://www.dynomotion.com/Help/Cmd.htm#Inject
http://www.dynomotion.com/Help/Cmd.htm#SetGatherDec
http://www.dynomotion.com/Help/Cmd.htm#SetGatherHex
http://www.dynomotion.com/Help/Cmd.htm#ClearFlashImage
http://www.dynomotion.com/Help/Cmd.htm#Flash
http://www.dynomotion.com/Help/Cmd.htm#LoadFlash
http://www.dynomotion.com/Help/Cmd.htm#ProgFlashImage
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcXZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcXZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcYZ
http://www.dynomotion.com/Help/Cmd.htm#ArcYZ
http://www.dynomotion.com/Help/Cmd.htm#ArcYZ
http://www.dynomotion.com/Help/Cmd.htm#ArcYZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcYZ
http://www.dynomotion.com/Help/Cmd.htm#ArcYZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcYZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#ArcHexXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHexXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHexXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHexXZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcHexXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHexXZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcHexXZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHexYZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHexYZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHexYZ
http://www.dynomotion.com/Help/Cmd.htm#ArcHexYZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcHexYZ
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#ArcHexYZ
http://dynomotion.com/Help/Cmd.htm#BegRapidBuf
http://www.dynomotion.com/Help/Cmd.htm#CheckDone
http://www.dynomotion.com/Help/Cmd.htm#CheckDone
http://www.dynomotion.com/Help/Cmd.htm#CheckDoneXYZA
http://www.dynomotion.com/Help/Cmd.htm#ConfigSpindle
http://www.dynomotion.com/Help/Cmd.htm#ConfigSpindle
http://www.dynomotion.com/Help/Cmd.htm#DefineCS

KFLOP User Manual 2016

111 | P a g e

User Threads

EntryPoint<N> <H>
CheckThread<N>
Execute<N>
Kill<N>
LoadData <H> <N>
SetStartupThread<N> <M>

<A><C>
DefineCSEX <X> <Y> <Z>
<A> <C> <U> <V>
DisableAxis<N>
EndRapidBuf
EnableAxis<N>
EnableAxisDest<N> <M>
Enabled<N>
ExecBuf
ExecTime
FlushBuf
GetSpindleRPS
GetStopState
Jog<N>=<V>
Linear <X0> <Y0> <Z0>
<A0> <B0> <C0>
<X1> <Y1> <Z1> <A1> <B1>
<C1>
<a> <c> <d> <tF>
LinearEx <X0> <Y0> <Z0>
<A0> <B0> <C0> <U0> <V0>
<X1> <Y1> <Z1> <A1> <B1>
<C1> <U1> <V1>
<a> <c> <d> <tF>
LinearHex <X0> <Y0> <Z0>
<A0> <B0> <C0>
<X1> <Y1> <Z1> <A1> <B1>
<C1>
<a> <c> <d> <tF>
LinearHexEx <X0> <Y0>
<Z0> <A0> <B0> <C0> <U0>
<V0>
<X1> <Y1> <Z1> <A1> <B1>
<C1> <U1> <V1>
<a> <c> <d> <tF>
LinHex1 <X1> <Y1> <Z1>
<A1> <B1> <C1>
 <a> <c> <d> <tF>

LinHex2 <a> <c> <d>
<tF>
LinHexEx1 <X1> <Y1> <Z1>
<A1> <B1> <C1> <U1> <V1>

 <a> <c> <d> <tF>
Move<N>=<M>
MoveAtVel<N>=<M> <V>
MoveExp<N>=<D> <T>
MoveRel<N>=<M>

http://www.dynomotion.com/Help/Cmd.htm#EntryPoint
http://dynomotion.com/Help/Cmd.htm#CheckThread
http://www.dynomotion.com/Help/Cmd.htm#Execute
http://www.dynomotion.com/Help/Cmd.htm#Kill
http://www.dynomotion.com/Help/Cmd.htm#LoadData
http://www.dynomotion.com/Help/Cmd.htm#SetStartupThread
http://www.dynomotion.com/Help/Cmd.htm#DefineCS
http://dynomotion.com/Help/Cmd.htm#DefineCSEX
http://dynomotion.com/Help/Cmd.htm#DefineCSEX
http://www.dynomotion.com/Help/Cmd.htm#DisableAxis
http://dynomotion.com/Help/Cmd.htm#EndRapidBuf
http://www.dynomotion.com/Help/Cmd.htm#EnableAxis
http://www.dynomotion.com/Help/Cmd.htm#EnableAxisDest
http://www.dynomotion.com/Help/Cmd.htm#Enabled
http://www.dynomotion.com/Help/Cmd.htm#ExecBuf
http://www.dynomotion.com/Help/Cmd.htm#ExecTime
http://dynomotion.com/Help/Cmd.htm#FlushBuf
http://www.dynomotion.com/Help/Cmd.htm#GetSpindleRPS
http://dynomotion.com/Help/Cmd.htm#GetStopState
http://www.dynomotion.com/Help/Cmd.htm#Jog
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#LinearEx
http://www.dynomotion.com/Help/Cmd.htm#LinearEx
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#LinearHexEx
http://www.dynomotion.com/Help/Cmd.htm#LinearHexEx
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#LinearHex
http://dynomotion.com/Help/Cmd.htm#LinHex1
http://dynomotion.com/Help/Cmd.htm#LinHex1
http://dynomotion.com/Help/Cmd.htm#LinHex1
http://dynomotion.com/Help/Cmd.htm#LinHex2
http://dynomotion.com/Help/Cmd.htm#LinHex2
http://dynomotion.com/Help/Cmd.htm#LinHexEx1
http://dynomotion.com/Help/Cmd.htm#LinHexEx1
http://dynomotion.com/Help/Cmd.htm#LinHexEx1
http://www.dynomotion.com/Help/Cmd.htm#Move
http://www.dynomotion.com/Help/Cmd.htm#MoveAtVel
http://dynomotion.com/Help/Cmd.htm#MoveExp
http://www.dynomotion.com/Help/Cmd.htm#MoveRel

KFLOP User Manual 2016

112 | P a g e

MoveRelAtVel<N>=<M> <V>
MoveXYZA <X> <Y> <Z>
<A>
OpenBuf
SetFRO <F>

SetFROTemp <F>

SetFROwRate <F> <R>

SetFROwRateTemp <F> <R>

SetRapidFRO <F>

SetRapidFROwRate <F> <R>
StopImmediate<M>

TrigThread <S>
Zero<N>

Misc Commands

Echo <S>
FPGA <N> <M>

FPGAW <N> <M>

GetPersistDec<N>
GetPersistHex<N>
GetStatus
Reboot!
SetPersistDec <O> <D>
SetPersistHex <O> <H>
Version

3PH<N>=<M> <A>

Description

Sets the assigned PWMs of an axis to the specified magnitude and phase angle for a brushless 3
phase motor.

This command is useful for energizing a coil (or effective coil position). This is often required while
initial homing or determining the commutation offset for a 3 phase brushless motor. If an effective
coil position is energized, the motor rotor will normally align itself to the coil position. This is similar
to the manner in which a stepping motor operates. Since the rotor location is then known, the
commutation offset may then be determined. Alternately if an index mark is available, the effective
coil position may be rotated by changing the phase angle until the index mark is detected.

Parameters

http://www.dynomotion.com/Help/Cmd.htm#MoveRelAtVel
http://www.dynomotion.com/Help/Cmd.htm#MoveXYZA
http://www.dynomotion.com/Help/Cmd.htm#MoveXYZA
http://www.dynomotion.com/Help/Cmd.htm#OpenBuf
http://dynomotion.com/Help/Cmd.htm#SetFRO
http://dynomotion.com/Help/Cmd.htm#SetFROTemp
http://dynomotion.com/Help/Cmd.htm#SetFROwRate
http://dynomotion.com/Help/Cmd.htm#SetFROwRateTemp
http://dynomotion.com/Help/Cmd.htm#SetRapidFRO
http://dynomotion.com/Help/Cmd.htm#SetRapidFROwRate
http://dynomotion.com/Help/Cmd.htm#StopImmediate
http://www.dynomotion.com/Help/Cmd.htm#TrigThread
http://www.dynomotion.com/Help/Cmd.htm#Zero
http://www.dynomotion.com/Help/Cmd.htm#Echo
http://dynomotion.com/Help/Cmd.htm#FPGA
http://dynomotion.com/Help/Cmd.htm#FPGAW
http://www.dynomotion.com/Help/Cmd.htm#GetPersistDec
http://www.dynomotion.com/Help/Cmd.htm#GetPersistHex
http://www.dynomotion.com/Help/Cmd.htm#GetStatus
http://www.dynomotion.com/Help/Cmd.htm#Reboot!
http://www.dynomotion.com/Help/Cmd.htm#SetPersistDec
http://www.dynomotion.com/Help/Cmd.htm#SetPersistHex
http://www.dynomotion.com/Help/Cmd.htm#Version

KFLOP User Manual 2016

113 | P a g e

<N>

Selected Axis for command. Valid range 0...7.

<M>

Magnitude of output to apply.

Valid Range is -230 ... +230 PWM units

<A>

Commutation angle to be used.

Units are in Commutation cycles

Only fractional value will be used

Example

3PH0=230 0.5

4PH<N>=<M> <A>

Sets the assigned PWMs of an axis to the specified magnitude and phase angle for a brushless 4
phase motor.

This command is useful for energizing a coil (or effective coil position). This is often required while
initial homing or determining the commutation offset for a 4 phase brushless motor. If an effective
coil position is energized, the motor rotor will normally align itself to the coil position. This is similar
to the manner in which a stepping motor operates. Since the rotor location is then known, the
commutation offset may then be determined. Alternately if an index mark is available, the effective
coil position may be rotated by changing the phase angle until the index mark is detected.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

KFLOP User Manual 2016

114 | P a g e

<M>

Magnitude of output to apply.

Valid Range is -250 ... +250 PWM units

<A>

Commutation angle to be used.

Units are in Commutation cycles

Only fractional value will be used

Example

4PH0=250 0.5

Accel <N>=<A>

or

Accel <N>

Description

Get or Set the max acceleration (for independent moves and jogs)

Parameters

<N>

Selected Axis for command. Valid range 0...7.

KFLOP User Manual 2016

115 | P a g e

<A>

The max acceleration. Units are in Position units per sec2

Example

Accel0=1000.0

ADC<N>

Description

Display current ADC (Analog to Digital Converter). Display range -2048 to 2047

Channels 0-3 are ±10V general purpose inputs

Channels 4-7 are Motor Currents

Parameters

<N>

ADC channel

Valid range 0 ... 7

Example: ADC 0

Arc <XC> <YC> <RX> <RY> <θ0> <dθ> <Z0> <A0> <B0> <C0> <Z1> <A1> <B1> <C1> <a>

 <c> <d> <tF>

Description

Place circular (also elliptical or helical) interpolated move into the coordinated motion buffer. See
also KMotion Coordinated Motion. A path through space is defined where x and y are changing in
an elliptical manner and z, a, b, c are changing in a linear manner forming a portion of a helix. A
parametric equation is defined which describes which portion of the path as well as how as a
function of time the path is to be traversed. This command can consist of up to 6 axis of coordinated
motion. X and Y perform an arc while Z, A, B, and C move linearly.

Although the Arc command may be sent directly, the Arc command is normally generated
automatically to perform a planned trajectory by the coordinated motion library or GCode.

(XC,YC) - center of circle

http://www.dynomotion.com/Help/CoordinatedMotion.htm

KFLOP User Manual 2016

116 | P a g e

(RX,RY) - x radius and y radius

θ0 - initial angle for the beginning of the path

dθ - amount of angular change for the path

Z0 - initial Z position of path

A0 - initial A position of path

B0 - initial B position of path

C0 - initial C position of path

Z1 - final Z position of path

A1 - final A position of path

B1 - final B position of path

C1 - final C position of path

3rd order parametric equation where

p = a t3 + b t2 + c t + d

p is the position along the path as a function of time. When p=0 the (x,y,z) position will be at the
beginning of the path (θ= θ0 and z=z0). When p=1 the (x,y,z) position will be at the end of the path
(θ= θ0+dθ, and z=z1).

This motion segment will be performed over a time period of tF, where t varies from 0 ... tF. Note
that it is not necessary that p vary over the entire range of 0 ... 1. This is often the case when there
may be an acceleration, constant velocity, and deceleration phase phase over the path. ie: t might
vary from 0.0->0.1 where p might vary from 0.3->0.7.

Parameters

<XC> - X center of ellipse, units are position units of x axis

<YC> - Y center of ellipse, units are position units of y axis

<RX> - X radius of ellipse, units are position units of x axis

<RY> - Y radius of ellipse, units are position units of y axis

<θ0> - initial theta position on ellipse, radians (0 radians points in the +x direction)

KFLOP User Manual 2016

117 | P a g e

<dθ> - change in theta position on ellipse, radians (+ theta causes CCW motion)

<Z0> - initial Z position on path, units are position units of z axis

<A0> - initial A position on path, units are position units of a axis

<B0> - initial B position on path, units are position units of b axis

<C0> - initial C position on path, units are position units of c axis

<Z1> - final Z position on path, units are position units of z axis

<A1> - final A position on path, units are position units of a axis

<B1> - final B position on path, units are position units of b axis

<C1> - final C position on path, units are position units of c axis

<a> - parametric equation t3 coefficient

 - parametric equation t2 coefficient

<c> - parametric equation t coefficient

<d> - parametric equation constant coefficient

<tF> - time for segment

Example (complete unit circle, centered at 0.5,0.5, no Z, A, B, or C motion, performed in 10
seconds)

Arc 0.5 0.5 1.0 1.0 0.0 6.28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 10.0

ArcXZ <XC> <ZC> <RX> <RZ> <θ0> <dθ> <Y0> <A0> <B0> <C0> <Y1> <A1> <B1> <C1>

<a> <c> <d> <tF>

Description

Place circular (also elliptical or helical) interpolated move into the coordinated motion buffer. Same
as Arc Command except circular motion is performed in the XZ plane rather than the XY plane.

ArcYZ <YC> <ZC> <RY> <RZ> <θ0> <dθ> <X0> <A0> <B0> <C0> <X1> <A1> <B1> <C1>

<a> <c> <d> <tF>

http://www.dynomotion.com/Help/Cmd.htm#Arc

KFLOP User Manual 2016

118 | P a g e

Description

Place circular (also elliptical or helical) interpolated move into the coordinated motion buffer. Same
as Arc Command except circular motion is performed in the YZ plane rather than the XY plane.

ArcHex <XC> <YC> <RX> <RY> <θ0> <dθ> <Z0> <A0> <B0> <C0> <Z1> <A1> <B1> <C1>

<a> <c> <d> <tF>

Description

Place circular (also elliptical or helical) interpolated move into the coordinated motion buffer. This
command is exactly the same as the Arc command above, except all 13 parameters are specified
as 32-bit hexadecimal values which are the binary images of 32-bit floating point values. When
generated by a program this is often faster, simpler, and more precise than decimal values. See
also KMotion Coordinated Motion.

Parameters

See above.

Example (complete unit circle, centered at 0.5,0.5, no Z motion, performed in 10 seconds)

Arc 3f000000 3f000000 3f800000 3f800000 0 40c8f5c3 0 0 0 0 40c8f5c3 0 41800000

ArcHexXZ <XC> <ZC> <RX> <RZ> <θ0> <dθ> <Y0> <A0> <B0> <C0> <Y1> <A1> <B1>

<C1> <a> <c> <d> <tF>

Description

Place circular (also elliptical or helical) interpolated move into the coordinated motion buffer. Same
as ArcHex Command except circular motion is performed in the XZ plane rather than the XY plane.

ArcHexYZ <YC> <ZC> <RY> <RZ> <θ0> <dθ> <X0> <A0> <B0> <C0> <X1> <A1> <B1>

<C1> <a> <c> <d> <tF>

Description

Place circular (also elliptical or helical) interpolated move into the coordinated motion buffer. Same
as ArcHex Command except circular motion is performed in the YZ plane rather than the XY plane.

BacklashAmount<N>=<A>

http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/Cmd.htm#Arc
http://www.dynomotion.com/Help/CoordinatedMotion.htm
http://www.dynomotion.com/Help/Cmd.htm#ArcHex
http://www.dynomotion.com/Help/Cmd.htm#ArcHex

KFLOP User Manual 2016

119 | P a g e

or

BacklashAmount<N>

Description

Sets or gets the amount of Backlash Compensation Offset to be applied.

See also BacklashMode and BacklashRate.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<A>

Floating point Backlash Compensation Amount in units of Steps or Counts.

Example

BacklashAmount=15.5

BacklashMode<N>=<M>

or

BacklashMode<N>

Description

Sets or gets the Backlash Compensation mode from either BACKLASH_OFF (0) to
BACKLASH_LINEAR (1). When the backlash mode is set to Linear mode, whenever the
commanded destination begins moving in the positive direction, a positive offset of the amount,
BacklashAmount, will be applied. The offset will be ramped upward as a linear function of time at
the rate specified as the BacklashRate. Whenever the commanded destination begins moving in the
negative direction the offset will be removed by ramping downward toward zero at the same rate.

If the the Backlash Compensation mode is set to BACKLASH_OFF (0), no backlash compensation
will be applied.

Parameters

<N>

http://www.dynomotion.com/Help/Cmd.htm#BacklashMode
http://www.dynomotion.com/Help/Cmd.htm#BacklashRate
http://www.dynomotion.com/Help/Cmd.htm#BacklashAmount
http://www.dynomotion.com/Help/Cmd.htm#BacklashRate

KFLOP User Manual 2016

120 | P a g e

Selected Axis for command. Valid range 0...7.

<M>

Backlash Compensation Mode setting. Currently 0 or 1.

Example

BacklashMode0=1

BacklashRate<N>=<R>

or

BacklashRate<N>

Description

Sets or gets the rate at which the amount of Backlash Compensation Offset will be applied.

See also BacklashMode and BacklashAmount.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<A>

Floating point Backlash Compensation Rate in units of Steps or Counts per second.

Example

BacklashRate=1000.0

BegRapidBuf

Description

Inserts into coordinated move buffer a command to indicate Rapid is in progress and to use Rapid
FRO.

Parameters

http://www.dynomotion.com/Help/Cmd.htm#BacklashMode
http://www.dynomotion.com/Help/Cmd.htm#BacklashAmount

KFLOP User Manual 2016

121 | P a g e

None

Example

BegRapidBuf

CheckDone<N>

Description

Displays:

1 if axis N has completed its motion

0 if axis N has not completed its motion

-1 if the axis is disabled

Parameters

<N>

Selected Axis for command. Valid range 0...7.

Example
CheckDone0

CheckDoneBuf

Description

Displays the status of the Coordinated Motion Buffer. KMotion contains a Coordinated Motion
Buffer where move segments (linear and arcs) and I/O commands may be downloaded and
executed in real time.

Displays:

1 if all coordinated move segments have completed

0 if all coordinated move segments have not completed

-1 if any axis in the defined coordinate system is disabled

Parameters

http://www.dynomotion.com/Help/Cmd.htm#DefineCS

KFLOP User Manual 2016

122 | P a g e

None

Example

CheckDoneBuf

CheckDoneGather

Description

Displays the status of a data gather operation. KMotion contains a mechanism for capturing data
from a variety of sources in real time. This mechanism is utilized when capturing data for Bode plots
and Step response plots. It is also available for general purpose use. See the data gathering
example.

Displays:

1 if data gather is completed

0 if data gather has not completed

Parameters

None

Example

CheckDoneGather

CheckDoneXYZABC

Description

Displays status of a commanded MoveXYZABC command. See also DefineCS6.

Displays:

1 if all axes in the defined coordinate system have completed their motion

0 if any axis in the defined coordinate system has not completed its motion

-1 if any axis in the defined coordinate system is disabled

Parameters

None

http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#Bode_plot
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm
http://www.dynomotion.com/Help/data_gathering.htm
http://www.dynomotion.com/Help/data_gathering.htm
http://www.dynomotion.com/Help/Cmd.htm#MoveXYZABC
http://www.dynomotion.com/Help/Cmd.htm#DefineCS6

KFLOP User Manual 2016

123 | P a g e

Example

CheckDoneXYZABC

CheckThread<N>

Description

Checks whether a User Program Thread is currently executing. Returns 1 if executing, 0 if not
executing.

Parameters

<N>

Thread number specified as a decimal number. Valid range 1...7

Example

CheckThread0

ClearBit<N>

Description

Clears an actual I/O bit or virtual I/O bit. Note that actual IO bits must be previously defined as an
output, see SetBitDirection

Parameters

<N>

Bit number specified as a decimal number. Valid range 0...31 for actual hardware I/O bits. Valid
range of 32...63 for virtual I/O bits.

Example

ClearBit0

ClearBitBuf<N>

http://www.dynomotion.com/Help/Cmd.htm#SetBitDirection

KFLOP User Manual 2016

124 | P a g e

Description

Inserts into the coordinated move buffer a command to clear an IO bit N(0..30) or a Virtual IO bit
(32..63) (actual IO bits must be defined as an output, see SetBitDirection)

Parameters

<N>

Bit Number to clear. Valid Range 0...63.

Example

ClearBitBuf0

ClearFlashImage

Description

Prepare to download FLASH firmware image. Sets entire RAM flash image to zero

Parameters

None.

Example

ClearFlashImage

CommutationOffset<N>=<X>

or

CommutationOffset<N>

Description

Get or Set 3 or 4 phase commutation offset. When brushless commutation is performed, the desired
Output Magnitude is distributed and applied to the various motor coils as a function of position. The
commutation offset shifts the manner in which the Output Magnitude is applied.

For a 3 phase brushless output mode, commutation offset is used in the following manner.

PhaseA = OutputMagnitude * sin((Position+CommutationOffset)*invDistPerCycle*2π)

http://www.dynomotion.com/Help/Cmd.htm#SetBitDirection

KFLOP User Manual 2016

125 | P a g e

PhaseB = OutputMagnitude * sin((Position+CommutationOffset)*invDistPerCycle*2π + 2π/3)

PhaseC = OutputMagnitude * sin((Position+CommutationOffset)*invDistPerCycle*2π + 4π/3)

For a 4 phase brushless output mode, commutation offset is used in the following manner.

PhaseA = OutputMagnitude * sin((Position+CommutationOffset)*invDistPerCycle*2π)

PhaseB = OutputMagnitude * cos((Position+CommutationOffset)*invDistPerCycle*2π)

See also invDistPerCycle and Configuration Parameters.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<X>

Offset in units of Position.

Example

CommutationOffset0=100.0

ConfigSpindle <T> <A> <U> <W> <C>

Description

Enables/Disables and configures the firmware to monitor Spindle Speed and Position to allow
reporting of Spindle Speed and to perform Threading operations.

See also: TrigThread and GetSpindleRPS

Parameters

<T>

Spindle Sensor Type. 0 - disables spindle measurement, 1 - defines the sensor type as a
quadrature encoder .

<A>

http://www.dynomotion.com/Help/Cmd.htm#InvDistPerCycle
http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Inv_Dist_Per_Cycle
http://www.dynomotion.com/Help/Cmd.htm#TrigThread
http://www.dynomotion.com/Help/Cmd.htm#GetSpindleRPS

KFLOP User Manual 2016

126 | P a g e

Axis - Defines the Axis Channel that will maintain the Spindle Position. Note this is not a Encoder

input channel. Rather it is the Axis Channel that has a Encoder input Channel defined. Valid range

0 ...7.

<U>

Update Time - delta time for measurement. This is the amount of time between Spindle Position

samples used to calculate the current speed. Speed = Delta Position/Delta Time. A longer time

period will allow for a more accurate speed measurement, especially at low speeds and if a low

resolution encoder is used. A shorter Update Time will make the speed measurement to be more

responsive as it changes. Units of seconds. Typical value 0.2 seconds

<W>

Tau - low pass filter time constant for threading. Pseudo Time along a time dependent trajectory

path is adjusted based on spindle position. The Pseudo Time is smoothed using a low pass filter

with a time constant of Tau to avoid making too abrupt changes of position, velocity or acceleration.

Units of seconds. Typical value 0.1 seconds

<C>

Counts per Revolution. Number of encoder counts per full revolution of the Spindle.

Example

ConfigureSpindle 1 0 0.2 0.1 4096.0

D<N>=<M>

or

D<N>

Description

Get or Set PID derivative Gain.

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#PID

KFLOP User Manual 2016

127 | P a g e

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Derivative Gain value. The units of the derivative gain are in Output Units/Position Units x Servo

Sample Time.

Example

D0=10.0

DAC<N> <M>

Description

DAC to value. DACs 0...3 have ±10 Volt ranges, DACs 4...7 have 0...4 Volt ranges. See also Analog
Status Screen.

Parameters

<N>

DAC channel to set. Valid Range 0...7.

<M>

DAC value to set in counts. Valid Range -2048...2047.

Example

DAC0=2000

DeadBandGain<N>=<M>

or

DeadBandGain<N>

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#Servo_Sample_Time
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#Servo_Sample_Time
http://www.dynomotion.com/Help/AnalogIOScreenKFLOP/AnalogIOScreen.htm#DACs
http://www.dynomotion.com/Help/AnalogIOScreenKFLOP/AnalogIOScreen.htm#DACs

KFLOP User Manual 2016

128 | P a g e

Description

Get or Set gain while error is within the deadband range. See DeadBand Description. See Servo
Flow Diagram.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Gain to be applied. A value of 1.0 will have normal gain while within the deadband. A value less

than 1.0 will have reduced gain within the deadband.

Example

DeadBandGain0=0.5

DeadBandRange<N>=<M>

or

DeadBandRange<N>

Description

Get or Set range where deadband gain is to be applied. See DeadBand Description. See Servo
Flow Diagram.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

±Range in Position units,

Example

http://www.dynomotion.com/Help/Cmd.htm#DeadBandRange
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#Dead_Band
http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/Cmd.htm#DeadBandGain
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#Dead_Band
http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/ServoFlowDiagram.htm

KFLOP User Manual 2016

129 | P a g e

DeadBandRange0=1.0

DefineCS<X> <Y> <Z> <A> <C>

or

DefineCS

Description

Set or get the defined X Y Z A B C coordinate system axis assignments for up to 6 axes of
coordinated motion. Unused axis are assigned an axis channel of -1.

See also Coordinated Motion.

Parameters

<X>

Assigned Axis channel number for X. Valid range -1 ... 7.

Use -1 if axis is not defined.

<Y>

Assigned Axis channel number for Y. Valid range -1 ... 7.

Use -1 if axis is not defined.

<Z>

Assigned Axis channel number for Z. Valid range -1 ... 7.

Use -1 if axis is not defined.

<A>

Assigned Axis channel number for A. Valid range -1 ... 7.

Use -1 if axis is not defined.

Assigned Axis channel number for B. Valid range -1 ... 7.

http://www.dynomotion.com/Help/CoordinatedMotion.htm

KFLOP User Manual 2016

130 | P a g e

Use -1 if axis is not defined.

<C>

Assigned Axis channel number for C. Valid range -1 ... 7.

Use -1 if axis is not defined.

Example

DefineCS

DefineCS = 0 1 2 3 4 -1

DefineCSEX<X> <Y> <Z> <A> <C> <U> <V>

or

DefineCSEX

Description

Set or get the defined X Y Z A B C coordinate system axis assignments for up to 8 axes of
coordinated motion. Unused axis are assigned an axis channel of -1.
See also Coordinated Motion.

Parameters

<X>

Assigned Axis channel number for X. Valid range -1 ... 7.
Use -1 if axis is not defined.

<Y>

Assigned Axis channel number for Y. Valid range -1 ... 7.
Use -1 if axis is not defined.

<Z>

Assigned Axis channel number for Z. Valid range -1 ... 7.
Use -1 if axis is not defined.

file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/CoordinatedMotion.htm

KFLOP User Manual 2016

131 | P a g e

<A>

Assigned Axis channel number for A. Valid range -1 ... 7.
Use -1 if axis is not defined.

Assigned Axis channel number for B. Valid range -1 ... 7.
Use -1 if axis is not defined.

<C>

Assigned Axis channel number for C. Valid range -1 ... 7.
Use -1 if axis is not defined.

<U>

Assigned Axis channel number for U. Valid range -1 ... 7.
Use -1 if axis is not defined.

<V>

Assigned Axis channel number for V. Valid range -1 ... 7.
Use -1 if axis is not defined.

Example

DefineCSEX

DefineCSEX = 0 1 2 3 4 5 6 7

Dest<N>=<M>

or

Dest<N>

KFLOP User Manual 2016

132 | P a g e

Description

Set or get the last commanded destination for an axis. The Dest (destination) is normally set (or
continuously updated) as the result of a motion command (Move, Jog, or Coordinated motion) , but
may also be set with this command if no motion is in progress.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Value to set in Position units. Valid range - any.

Example

Dest0=100

or

Dest0

DisableAxis<N>

Description

Kill any motion and disable motor. Any associated output PWM channels for the axis will be set to
0R mode.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

Example

DisableAxis0

Echo <S>

Description

KFLOP User Manual 2016

133 | P a g e

Echo character string back to the Console Screen.

Parameters

<S>

Any character string < 80 characters

Example

Echo Hello

EnableAxis<N>

Description

Set an Axis' destination to the Current Measured Position and enable the axis. See also
EnableAxisDest to explicitly set the desired destination for the axis. Note for a MicroStepper Axis
(which normally has no measured position) this command will leave the Axis' destination
unchanged. .

Parameters

<N>

Selected Axis for command. Valid range 0...7.

Example

Enable0

EnableAxisDest<N> <M>

Description

Set an Axis' destination to the specified position and enable the axis. See also EnableAxis to set the
desired destination to the current measured position.

<N>

Selected Axis for command. Valid range 0...7.

<M>

Destination for the axis. Position units. Valid range - any.

http://www.dynomotion.com/Help/ConsoleScreen/ConsoleScreen.htm
http://www.dynomotion.com/Help/Cmd.htm#EnableAxisDest
http://www.dynomotion.com/Help/Cmd.htm#EnableAxis

KFLOP User Manual 2016

134 | P a g e

Example

EnableAxisDest0 1000.0

Enabled<N>

Description

Display whether the specified axis is enabled, 1 - if currently enabled, 0 - if not enabled.

Note: to enable an axis use EnableAxis or EnableAxisDest.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

Example

Enabled0

EndRapidBuf

Description

Inserts into coordinated move buffer a command to indicate Rapid has been completed and to no
longer use Rapid FRO.

Parameters

None

Example

EndRapidBuf

EntryPoint<N> <H>

Description

Set execution start address of user thread to specified address. This operation if normally
performed automatically when downloading a user program.

http://www.dynomotion.com/Help/Cmd.htm#EnableAxis
http://www.dynomotion.com/Help/Cmd.htm#EnableAxisDest

KFLOP User Manual 2016

135 | P a g e

Parameters

<N>

User Thread number to set. Decimal number. Valid range 1...7.

<H>

Start address. 32 bit Hex number.

Example

Entrypoint1 80030000

ExecBuf

Description

Execute the contents of the coordinated motion buffer. Use CheckDoneBuf to determine when the
buffer has been fully executed. See also Coordinated Motion.

Parameters

None

Example

ExecBuf

ExecTime

Description

Displays the amount of the Coordinated Motion Buffer that has been already executed in terms of
Time. KMotion contains a Coordinated Motion Buffer where move segments (linear and arcs) and
I/O commands may be downloaded and executed in real time. This command is useful for
determining how long before the Coordinated Motion Buffer will complete. For example, if a number
of segments have been downloaded where their total execution time is 10 seconds, and they are
currently in progress of being executed, and the ExecTime command reports that 8 seconds worth
of segments have been executed, then the remaining time before the queue completes (or starves
for data) would be 2 seconds. This command is useful for applications where it is important not to
download data too far ahead so changes to the Trajectory may be made. The value returned is a
floating point decimal value in Seconds with 3 decimal places. If the Coordinated Motion has
already completed the amount of time will be a negative value whose magnitude is the total time
that was executed. See also Coordinated Motion.

http://www.dynomotion.com/Help/Cmd.htm#CheckDoneBuf
http://www.dynomotion.com/Help/CoordinatedMotion.htm
http://www.dynomotion.com/Help/CoordinatedMotion.htm

KFLOP User Manual 2016

136 | P a g e

Displays:

Executed time in seconds as a floating point decimal number with 3 decimal places

ie. 10.123

If the buffer has already completed the value will be negative

ie. -10.123

Parameters

None

Example

ExecTime

Execute<N>

Description

Begin execution of thread. Execution begins at the previously specified thread entry point.

See also C Program Screen.

Parameters

<N>

Thread number to begin execution. Decimal number. Valid range 1...7.

Example

Execute1

FFAccel<N>=<M>

or

FFAccel<N>

Description

Set or get Acceleration feed forward for axis.

http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm

KFLOP User Manual 2016

137 | P a g e

See also feed forward tuning.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Feed forward value. units are in Output units per Input Units per sec2.

Example

FFAccel0=100.0

or

FFAccel0

FFVel<N>=<M>

or

FFVel<N>

Description

Set or get Velocity feed forward for axis.

See also feed forward tuning.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Feed forward value. units are in Output units per Input Units per sec.

Example

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#Feed_Forward
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#Feed_Forward

KFLOP User Manual 2016

138 | P a g e

FFVel0=100.0

or

FFVel0

Flash

Description

Flash current user programs, persistent memory area, all axes configurations, tuning, and filter
parameters to non-volatile memory. The entire state of the KMotion is saved to FLASH memory.
Any active user programs will be paused during the flash operation

Parameters

None

Example

Flash

FlushBuf

Description

Informs KFLOP that the Coordinated Motion Buffer has been Flushed. This permits KFLOP to
execute to the end of the buffer without performing protection against buffer starvation which would
normally perform Feed Rate reduction in an attempt to avoid buffer underflow.

Parameters

None

Example

FlushBuf

FPGA<N> <M>

Description

Directly write an 8-bit value to an FPGA register. Should be only used with caution.

Parameters

KFLOP User Manual 2016

139 | P a g e

<N>

FPGA Register address to write as a decimal number. Valid range 0...1023.

<M>

8-bit value as a decimal number. Valid range 0...255.

Example

FPGA 261 192

FPGAW<N> <M>

Description

Directly write a 16-bit value to an FPGA register. Should be only used with caution.

Parameters

<N>

FPGA Register address to write as a decimal number. Valid range 0...1023.

<M>

16-bit value as a decimal number. Valid range 0...65536.

Example

FPGAW 5 263

GatherMove<N> <M> <L>

Description

Performs a profiled move on an axis of the specified distance while gathering the specified number
of points of data. This command is used while gathering data for the Step Response Screen plots.

http://www.dynomotion.com/Help/data_gathering.htm
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm

KFLOP User Manual 2016

140 | P a g e

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Distance to move. Units are Position Units. Valid Range - any.

<L>

Number of servo samples to gather. Valid Range - 1...40000

Example

GatherMove0 1000.0 2000

GatherStep<N> <M> <L>

Description

Performs a step on an axis of the specified distance while gathering the specified number of points
of data. This command is used while gathering data for the Step Response Screen plots.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Distance to step. Units are Position Units. Valid Range - any.

<L>

Number of servo samples to gather. Valid Range - 1...40000

Example

GatherStep0 1000.0 2000

http://www.dynomotion.com/Help/data_gathering.htm
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm

KFLOP User Manual 2016

141 | P a g e

GetBitDirection<N>

Description

Displays whether an IO bit N (0..30) is defined as input (0) or output (1)

Parameters

<N>

I/O bit number. Valid range 0...30

Example

GetBitDirection0

GetGather <N>

Description

Upload N data points from previous GatherMove or GatherStep command. Captured commanded
destination, measured position, and output are uploaded as hex values (that represent binary
images of 32-bit floating point values). Eight samples (24 values) per line.

Parameters

<N>

Number of points to upload. Valid range 1...40000.

Example

GetGather 1000

GetGatherDec<N>

Description

Reads a single word from the Gather Buffer at the specified offset. A single 32-bit value displayed
as a signed decimal integer number will be displayed.

Parameters

<N>

http://www.dynomotion.com/Help/Cmd.htm#GatherMove
http://www.dynomotion.com/Help/Cmd.htm#GatherStep
http://www.dynomotion.com/Help/data_gathering.htm

KFLOP User Manual 2016

142 | P a g e

Offset into gather buffer, specified as a decimal offset of 32 bit words. Valid range 0...1999999

Example

GetGatherDec 1000

GetGatherHex<N> <M>

Description

Reads multiple words from the Gather Buffer beginning at the specified offset. Hexadecimal values
will be displayed that will represent binary images of the contents of the gather buffer as 32 bit
words.

Parameters

<N>

Offset into gather buffer, specified as a decimal offset of 32 bit words. Valid range 0...1999999

<M>

Number of 32 bit words to display. Decimal integer. Valid range 1...2000000

Example

GetGatherHex 0 100

GetInject<N> <M>

Description

Display results of signal injection and gathering. Bode Plot measurement involves injecting a signal
and measuring the response for each of N_CPLX (2048) samples. This command gets the result
from the injection. 3 values per sample are uploaded. Injection value, position response (relative to
destination), and servo output. All 3 values are printed as hexadecimal values which represent the
image of a 32-bit floating point value. 8 samples (24 hex values) are printed per line.

Parameters

None

Example

GetInject

http://www.dynomotion.com/Help/data_gathering.htm

KFLOP User Manual 2016

143 | P a g e

GetPersistDec<N>

Description

Read a single word from the Persist Array at the specified offset a single 32-bit value displayed as a
signed decimal number. The persist array is a general purpose array of N_USER_DATA_VARS
(100) 32-bit values that is accessible to the host as well as KMotion C Programs. It may be used to
share parameters, commands, or information between programs.

C Programs may access this array as the integer array:

persist.UserData[n];

It also resides in the KMotion Persist memory structure so that if memory is flashed, the value will
be present at power up.

See also GetPersistHex, SetPersistDec, SetPersistHex

Parameters

<N>

Offset into the integer array. Valid range 0...99.

Example

GetPersistDec 10

GetPersistHex<N>

Description

Read a single word from the Persist Array at the specified offset a single 32-bit value displayed as
an unsigned hexadecimal number. The persist array is a general purpose array of
N_USER_DATA_VARS (100) 32-bit values that is accessible to the host as well as KMotion C
Programs. It may be used to share parameters, commands, or information between programs.

C Programs may access this array as the integer array:

persist.UserData[n];

It also resides in the KMotion Persist memory structure so that if memory is flashed, the value will
be present at power up.

See also GetPersistDec, SetPersistDec, SetPersistHex

http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm
http://www.dynomotion.com/Help/Cmd.htm#GetPersistHex
http://www.dynomotion.com/Help/Cmd.htm#SetPersistDec
http://www.dynomotion.com/Help/Cmd.htm#SetPersistHex
http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm
http://www.dynomotion.com/Help/ProgramScreen/ProgramScreen.htm
http://www.dynomotion.com/Help/Cmd.htm#GetPersistDec
http://www.dynomotion.com/Help/Cmd.htm#SetPersistDec
http://www.dynomotion.com/Help/Cmd.htm#SetPersistHex

KFLOP User Manual 2016

144 | P a g e

Parameters

<N>

Offset into the integer array. Valid range 0...99.

Example

GetPersistHex 10

GetSpindleRPS

Description

Reports the current Spindle Speed in revolutions per second.

See also ConfigSpindle and TrigThread

Parameters

Example

GetSpindleRPS

GetStatus

Description

Upload Main Status record in hex format. KMotion provides a means of quickly uploading the most
commonly used status. This information is defined in the PC-DSP.h header file as the
MAIN_STATUS structure. The entire stucture is uploaded as a binary image represented as 32-bit
hexadecimal values.

Parameters

None

Example

GetStatus

I<N>=<M>

or

http://www.dynomotion.com/Help/Cmd.htm#ConfigSpindle
http://www.dynomotion.com/Help/Cmd.htm#TrigThread

KFLOP User Manual 2016

145 | P a g e

I<N>

Description

Get or Set PID Integral Gain.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Integral Gain value. The units of the derivative gain are in Output Units x Position Units x Servo

Sample Time.

Example

I0=10.0

or

I0

GetStopState

Description

Reports the state of any feedhold stop in progress. 0 = not stopping, 1=stopping a coord motion,
2=stopping an independent motion of one or more axes, 3=fully stopped, 4=independent motion of
all related axes fully stopped. This returns the KFLOP C program variable - CS0_StoppingState. A
feedhold stop can be initiated from C code or from the Console Command StopImmediate.

Parameters

None

Example

GetStopState

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#PID
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#Servo_Sample_Time
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#Servo_Sample_Time
http://www.dynomotion.com/Help/Cmd.htm#StopImmediate

KFLOP User Manual 2016

146 | P a g e

IIR<N> <M>=<A1> <A2> <B0> <B1> <B2>

or

IIR<N> <M>

Description

Set or get IIR Z domain servo filter.

See also IIR Filter Screen

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Filter number for axis. Valid range 0...2.

<A1> <A2> <B0> <B1> <B2>

Filter coefficients represented as floating point decimal values.

Example

IIR0 0=1.5 2.5 -3.5 4.5 5.5

or

IIR0 0

Inject<N> <F> <A>

Description

A Inject random stimulus into an axis with the specified cutoff frequency and amplitude. Useful for
generating Bode plots.

Parameters

http://www.dynomotion.com/Help/FilterScreen/FilterScreen.htm
http://www.dynomotion.com/Help/BodeScreen/BodeScreen.htm#Amplitude

KFLOP User Manual 2016

147 | P a g e

<N>

Selected Axis for command. Valid range 0...7.

<F>

Cuttoff Frequency in Hz. Valid range - any.

<A>

Amplitude in position units. Valid range - any.

Example

Inject0 100.0 20.0

InputChan<M> <N>=<C>

or

InputChan<M> <N>

Description

Get or Set the first or second Input Channel of an axis. See description of this parameter on the
Configuration Screen.

Parameters

<M>

Selected input channel. Valid range 0...1.

<N>

Selected Axis for command. Valid range 0...7.

<C>

Channel number to assign. Valid range 0...7.

Example (set first input channel of axis 3 to 3)

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Input_Channels

KFLOP User Manual 2016

148 | P a g e

InputChan0 3=3

or

InputChan0 3

InputGain<M> <N>=<G>

or

InputGain<M> <N>

Description

Set or get first or second Input Gain of an axis. See description of this parameter on the
Configuration Screen.

Parameters

<M>

Selected input channel. Valid range 0...1.

<N>

Selected Axis for command. Valid range 0...7.

<C>

Input Gain. Valid range - any.

Example

InputGain0 3=1.0

InputMode<N>=<M>

or

InputMode<N>

Description

Set or get the position input mode for an axis. See description of this parameter on the
Configuration Screen.

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Input_Channels
http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Axis_Modes

KFLOP User Manual 2016

149 | P a g e

Valid modes are (from PC-DSP.h):

#define NO_INPUT_MODE 0

#define ENCODER_MODE 1
#define ADC_MODE 2
#define RESOLVER_MODE 3
#define USER_INPUT_MODE 4

 Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Mode. Valid range 1...4

Example

SetInputMode0=1

InputOffset<M> <N>=<O>

or

InputOffset<M> <N>

Description

Set or get first or second Input Offset of an axis. See description of this parameter on the
Configuration Screen.

Parameters

<M>

Selected input channel. Valid range 0...1.

<N>

Selected Axis for command. Valid range 0...7.

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Input_Channels

KFLOP User Manual 2016

150 | P a g e

<O>

Input Offset. Valid range - any.

Example

InputOffset0 3=0.0

InvDistPerCycle<N>=<X>

Description

Get or Set distance per cycle (specified as an inverse) of an axis. May specify the cycle of either a
Stepper of Brushless Motor.

See description of this parameter on the Configuration Screen.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<X>

Inverse (reciprocal) of distance for a complete cycle. Inverse position units. Should be specified

exactly or with very high precision (double precision accuracy ~ 15 digits). Valid range - any.

Example

InvDistPerCycle0=0.05

Jerk<N>=<J>

or

Jerk<N>

Description

Get or Set the max jerk (for independent moves and jogs)

Parameters

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Inv_Dist_Per_Cycle
http://www.dynomotion.com/Help/Glossary.htm#Jerk

KFLOP User Manual 2016

151 | P a g e

<N>

Selected Axis for command. Valid range 0...7.

<J>

The max Jerk. Units are in Position units per sec3

Example

Jerk0=10000.0

Jog<N>=<V>

Description

Move at constant velocity. Uses Accel and Jerk parameters for the axis to accelerate from the
current velocity to the specified velocity. Axis should be already enabled. Specify zero velocity to
decelerate to a stop.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<V>

new Velocity in position units/second. Valid range - any.

Example

Jog0=-200.5

Kill<N>

Description

Stop execution of a user thread.

Parameters

<N>

http://www.dynomotion.com/Help/Cmd.htm#Accel
http://www.dynomotion.com/Help/Cmd.htm#Jerk

KFLOP User Manual 2016

152 | P a g e

Thread to halt. Valid range 1..7

Example

Kill0

Lead<N>=<M>

or

Lead<N>

Description

Set or get Lead Compensation for an axis. Lead Compensation is used to compensate for lag
caused by motor inductance.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Lead Compensation. Valid range - any.

Example

Lead0=10.0

or

Lead0

LimitSwitch<N>=<H>

Description

Configures Limit Switch Options. Specify Hex value where:

See also Configuration Screen.

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Lead_Compensation
http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Limit_Switch_Options

KFLOP User Manual 2016

153 | P a g e

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<H>

32-bit hexadecimal value:

Bit 0 1=Stop Motor on Neg Limit, 0=Ignore Neg limit

Bit 1 1=Stop Motor on Pos Limit, 0=Ignore Pos limit

Bit 2 Neg Limit Polarity 0=stop on high, 1=stop on low

Bit 3 Pos Limit Polarity 0=stop on high, 1=stop on low

Bits 4-7 Action - 0 Kill Motor Drive

1 Disallow drive in direction of limit

2 Stop movement

Bits 16-23 Neg Limit Bit number

Bits 24-31 Pos Limit Bit number

Example

LimitSwitch2 0C0D0003

Linear <X0> <Y0> <Z0> <A0> <B0> <C0> <X1> <Y1> <Z1> <A1> <B1> <C1> <a> <c>

<d> <tF>

Description

Place linear (in 6 dimensions) interpolated move into the coordinated motion buffer. See also
KMotion Coordinated Motion. A path through space is defined where x, y, z, a, b, and c are
changing in a linear manner. A parametric equation is defined which describes which portion of the
path as well as how as a function of time the path is to be traversed.

Although the Linear command may be sent directly, the Linear command is normally generated
automatically to perform a planned trajectory by the coordinated motion library or GCode.

http://www.dynomotion.com/Help/CoordinatedMotion.htm

KFLOP User Manual 2016

154 | P a g e

(X0,Y0,Z0,A0,B0,C0) - beginning of path

(X1,Y1,Z1,A1,B1,C1) - end of path

3rd order parametric equation where

p = a t3 + b t2 + c t + d

p is the position along the path as a function of time. When p=0 the (x,y,z,A) position will be at the
beginning of the path. When p=1 the (x,y,z,A) position will be at the end of the path.

This motion segment will be performed over a time period of tF, where t varies from 0 ... tF. Note
that it is not necessary that p vary over the entire range of 0 ... 1. This is often the case when there
may be an acceleration, constant velocity, and deceleration phase over the path. ie: t might vary
from 0.0->0.1 where p might vary from 0.3->0.7.

Parameters

<X0> - X begin point

<Y0> - Y begin point

<Z0> - Z begin point

<A0> - A begin point

<B0> - B begin point

<C0> - C begin point

<X0> - X end point

<Y1> - Y end point

<Z1> - Z end point

<A1> - A end point

<B1> - B end point

<C1> - C end point

<θ1> - initial theta position on ellipse, radians (0 radians points in the +x direction)

<a> - parametric equation t3 coefficient

 - parametric equation t2 coefficient

KFLOP User Manual 2016

155 | P a g e

<c> - parametric equation t coefficient

<d> - parametric equation constant coefficient

<tF> - time for segment

Example

Linear 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0

LinearEx <X0> <Y0> <Z0> <A0> <B0> <C0> <U0> <V0> <X1> <Y1> <Z1> <A1> <B1> <C1>

<U1> <V1> <a> <c> <d> <tF>

Description

Place linear (in 8 dimensions) interpolated move into the coordinated motion buffer. See also
KMotion Coordinated Motion. A path through space is defined where x, y, z, a, b, c, u and v are
changing in a linear manner. A parametric equation is defined which describes which portion of the
path as well as how as a function of time the path is to be traversed.

Although the Linear command may be sent directly, the Linear command is normally generated
automatically to perform a planned trajectory by the coordinated motion library or GCode, however
currently the GCode Interpreters available only support 6 axes of simultaneous motion.

(X0,Y0,Z0,A0,B0,C0,U0,V0) - beginning of path

(X1,Y1,Z1,A1,B1,C1,U1,V1) - end of path

3rd order parametric equation where

p = a t3 + b t2 + c t + d

p is the position along the path as a function of time. When p=0 the (x,y,z,A) position will be at the
beginning of the path. When p=1 the (x,y,z,A) position will be at the end of the path.

This motion segment will be performed over a time period of tF, where t varies from 0 ... tF. Note
that it is not necessary that p vary over the entire range of 0 ... 1. This is often the case when there
may be an acceleration, constant velocity, and deceleration phase over the path. ie: t might vary
from 0.0->0.1 where p might vary from 0.3->0.7.

Parameters

<X0> - X begin point

<Y0> - Y begin point

http://www.dynomotion.com/Help/CoordinatedMotion.htm

KFLOP User Manual 2016

156 | P a g e

<Z0> - Z begin point

<A0> - A begin point

<B0> - B begin point

<C0> - C begin point

<U0> - U begin point

<V0> - V begin point

<X0> - X end point

<Y1> - Y end point

<Z1> - Z end point

<A1> - A end point

<B1> - B end point

<C1> - C end point

<U1> - U end point

<V1> - V end point

<θ1> - initial theta position on ellipse, radians (0 radians points in the +x direction)

<a> - parametric equation t3 coefficient

 - parametric equation t2 coefficient

<c> - parametric equation t coefficient

<d> - parametric equation constant coefficient

<tF> - time for segment

Example

LinearEx 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0

LinearHex <X0> <Y0> <Z0> <A0> <B0> <C0> <X1> <Y1> <Z1> <A1> <B1> <C1> <a>

<c> <d> <tF>

KFLOP User Manual 2016

157 | P a g e

Description

Place linear (in 6 dimensions) interpolated move into the coordinated motion buffer. This command
is exactly the same as the Linear command above, except all 17 parameters are specified as 32-bit
hexadecimal values which are the binary images of 32-bit floating point values. When generated by
a program this is often faster, simpler, and more precise than decimal values. See also KMotion
Coordinated Motion.

Parameters

See above.

Example

LinearHex 0 0 0 0 0 0 3F800000 3F800000 3F800000 3F800000 3F800000 3F800000 0 0
3F800000 0 3F800000

LinearHexEx <X0> <Y0> <Z0> <A0> <B0> <C0> <U0> <V0> <X1> <Y1> <Z1> <A1> <B1>

<C1> <U1> <V1> <a> <c> <d> <tF>

Description

Place linear (in 8 dimensions) interpolated move into the coordinated motion buffer. This command
is exactly the same as the LinearEx command above, except all 21 parameters are specified as 32-
bit hexadecimal values which are the binary images of 32-bit floating point values. When generated
by a program this is often faster, simpler, and more precise than decimal values. See also KMotion
Coordinated Motion.

Parameters

See above.

Example

LinearHex 0 0 0 0 0 0 0 0 3F800000 3F800000 3F800000 3F800000 3F800000 3F800000
3F800000 3F800000 0 0 3F800000 0 3F800000

LinHex1 <X1> <Y1> <Z1> <A1> <B1> <C1> <a> <c> <d> <tF>

Description

Place linear (in 6 dimensions) interpolated move into the coordinated motion buffer. This command
is exactly the same as the LinearHex command above, except the beginning point is not specified
and is assumed to be the endpoint of the previous LinearHex or LinHex1 command. See also
KMotion Coordinated Motion.

http://www.dynomotion.com/Help/Cmd.htm#Linear
http://www.dynomotion.com/Help/CoordinatedMotion.htm
http://www.dynomotion.com/Help/CoordinatedMotion.htm
http://www.dynomotion.com/Help/Cmd.htm#LinearEx
http://www.dynomotion.com/Help/CoordinatedMotion.htm
http://www.dynomotion.com/Help/CoordinatedMotion.htm
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/Cmd.htm%23LinearHex
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/Cmd.htm%23LinearHex
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/Cmd.htm%23LinHex1
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/CoordinatedMotion.htm

KFLOP User Manual 2016

158 | P a g e

Parameters

See above.

Example

LinHex1 3F800000 3F800000 3F800000 3F800000 3F800000 3F800000 0 0 3F800000 0
3F800000

LinHex2 <a> <c> <d> <tF>

Description

Place linear (in 6 or 8 dimensions) interpolated move into the coordinated motion buffer. This
command is exactly the same as the LinearHex or LinearHexEx command above, except neither
the beginning or ending point is specified and is assumed to be the same as the most recent
LinearHex, LinearHexEx, LinHex1, or LinHex2, command. This command can be used when
there are more than one phases (ie Jerk, acceleration, constant velocity, etc. that occur along a
single linear segment). See also KMotion Coordinated Motion.

Parameters

See above.

Example

LinHex2 0 0 3F800000 0 3F800000

LinHexEx1 <X1> <Y1> <Z1> <A1> <B1> <C1> <U1> <V1> <a> <c> <d> <tF>

Description

Place linear (in 8 dimensions) interpolated move into the coordinated motion buffer. This command
is exactly the same as the LinearHexEx command above, except the beginning point is not
specified and is assumed to be the endpoint of the previous LinearHexEx or LinHexEx1
command. See also KMotion Coordinated Motion.

Parameters

See above.

Example

file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/Cmd.htm%23LinearHex
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/Cmd.htm%23LinearHexEx
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/Cmd.htm%23LinearHex
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/Cmd.htm%23LinearHexEx
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/Cmd.htm%23LinHex1
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/CoordinatedMotion.htm
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/Cmd.htm%23LinearHexEx
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/Cmd.htm%23LinearHexEx
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/CoordinatedMotion.htm

KFLOP User Manual 2016

159 | P a g e

LinHexEx1 3F800000 3F800000 3F800000 3F800000 3F800000 3F800000 3F800000 3F800000 0
0 3F800000 0 3F800000

LoadData <H> <N>

 ...

Description

Store data bytes into memory beginning at specified address for N bytes. The data must follow with
up to N_BYTES_PER_LINE (64) bytes per line. This command is normally only used by the COFF
loader. Since this command spans several lines, it may only be used programatically in conjunction
with a KMotionLock or WaitToken command so that it is not interrupted.

Parameters

<H>

32-bit hexadecimal address

<N>

Number of bytes to follow and to be stored

 ...

Bytes to store. 2 hexadecimal digits per byte, separated with a space.

Example

LoadData 80030000 4

FF FF FF FF

LoadFlash<H> <N>

 ...

Description

http://www.dynomotion.com/Help/Glossary.htm#COFF
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#KMotionLock
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#WaitToken

KFLOP User Manual 2016

160 | P a g e

Store data into FLASH image. Only by KMotion for downloading a new firmware version. Store
data bytes into memory beginning at specified address for N bytes. The data must follow with up to
N_BYTES_PER_LINE (64) bytes per line. This command is normally only used by the COFF
loader. Since this command spans several lines, it may only be used programmatically in
conjunction with a KMotionLock or WaitToken command so that it is not interrupted.

Parameters

<H>

32-bit hexadecimal address

<N>

Number of bytes to follow and to be stored

 ...

Bytes to store. 2 hexadecimal digits per byte, separated with a space.

Example

LoadFlash FF00 4

FF FF FF FF

MasterAxis<N>=<M>

or

MasterAxis<N>

Description

Sets or gets the axis <M> to which the current axis <N> is to be slaved. The current axis becomes a
slave and will follow the motion of the specified Master Axis. More than one axis can be slaved to a
single master axis if desired. When slaved, changes in the commanded destination of the master
axis will be mirrored as changes in the slaved axis's destination however scaled by the SlaveGain
(as specified in the Slave Axis). The SlaveGain my be negative if opposing motion is desired.

Setting the Master Axis value to -1 disables the Slave mode.

Parameters

<N>

http://www.dynomotion.com/Help/Glossary.htm#COFF
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#KMotionLock
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#WaitToken
http://www.dynomotion.com/Help/Cmd.htm#SlaveGain

KFLOP User Manual 2016

161 | P a g e

Selected Axis for command. Valid range 0 ... 7.

<M>

Master Axis or -1 to disable. Valid range -1 ... 7.

Example (set axis 1 to follow axis 0)

MasterAxis1=0

or

MasterAxis

MaxErr<N>=<M>

or

MaxErr<N>

Description

Set or get Maximum Error for axis (Limits magnitude of error entering PID).

See Servo Flow Diagram and Step Response Screen for more information.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Maximum Error. Valid range - any positive value. Set to a large value to disable.

Example

MaxErr0=100.0

or

MaxErr0

MaxFollowingError<N>=<M>

http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#max_limits
http://www.dynomotion.com/Help/Glossary.htm#Large_Value

KFLOP User Manual 2016

162 | P a g e

or

MaxFollowingError<N>

Description

Set or get the maximum allowed following error before disabling the axis.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Maximum Following Error. Valid range - any positive value. Set to a large value to disable.

Example

MaxFollowingError0=100.0

or

MaxFollowingError0

MaxI<N> <M>

Description

Set or get Maximum Integrator "wind up" for axis. Integrator saturates at the specified value.

See also Servo Flow Diagram and Step Response Screen for further information.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Maximum Integrator value. Valid range - any positive value. Set to a large value to disable.

http://www.dynomotion.com/Help/Glossary.htm#Following_Error
http://www.dynomotion.com/Help/Cmd.htm#DisableAxis
http://www.dynomotion.com/Help/Glossary.htm#Large_Value
http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#max_limits
http://www.dynomotion.com/Help/Glossary.htm#Large_Value

KFLOP User Manual 2016

163 | P a g e

Example

MaxI0=100.0

or

MaxI0

MaxOutput<N>=<M>

or

MaxOutput<N>

Description

Set or get Maximum Output for an axis. Limits magnitude of servo output. Output saturates at the
specified value.

See also Servo Flow Diagram and Step Response Screen for further information.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Maximum output value. Valid range - any positive value. Set to a large value to disable.

Example

MaxOutput0=100.0

or

MaxOutput

Move<N>=<M>

Description

Move axis to absolute position. Axis should be already enabled. Uses Vel, Accel and Jerk
parameters for the axis to profile a motion from the current state to the specified position.

http://www.dynomotion.com/Help/ServoFlowDiagram.htm
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#max_limits
http://www.dynomotion.com/Help/Glossary.htm#Large_Value
http://www.dynomotion.com/Help/Cmd.htm#Vel
http://www.dynomotion.com/Help/Cmd.htm#Accel
http://www.dynomotion.com/Help/Cmd.htm#Jerk

KFLOP User Manual 2016

164 | P a g e

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

new position in position units. Valid range - any.

Example

Move0=100.1

MoveAtVel<N>=<M> <V>

Description

Move axis to absolute position at the specified Velocity. Axis should be already enabled. Uses Accel
and Jerk parameters for the axis to profile a motion from the current state to the specified position.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

new position in position units. Valid range - any.

<V>

Desired Velocity for the Motion. Valid range - any.

Example

MoveAtVel0=100.1 30.0

MoveExp<N>=<D> <T>

Description

http://www.dynomotion.com/Help/Cmd.htm#Accel
http://www.dynomotion.com/Help/Cmd.htm#Jerk

KFLOP User Manual 2016

165 | P a g e

Moves axis in an exponential manner toward the Destination using Time Constant T. The velocity
of motion will be proportional to the distance from the Destination. The distance to the Destination
will be reduced by 63% (1/e) every Time Constant, T. The Axis should be already enabled. Honors
the Vel and Accel axis parameters.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<D>

Destination in position units. Valid range - any.

<T>

Time Constant Tau in seconde. Valid range - any positive number.

Example

MoveExp0=1000 0.1

MoveRel<N>=<M>

Description

Move axis relative to current destination. Same as Move command except specified motion is
relative to current destination.

Axis should be already enabled. Uses Vel, Accel and Jerk parameters for the axis to profile a
motion from the current state to the specified position.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/Cmd.htm%23Vel
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/Cmd.htm%23Accel
http://www.dynomotion.com/Help/Cmd.htm#Move
http://www.dynomotion.com/Help/Cmd.htm#Vel
http://www.dynomotion.com/Help/Cmd.htm#Accel
http://www.dynomotion.com/Help/Cmd.htm#Jerk

KFLOP User Manual 2016

166 | P a g e

<M>

Distance to move in position units. Valid range - any.

Example

MoveRel0=100.1

MoveRelAtVel<N>=<M> <V>

Description

Move axis relative to current destination at the specified Velocity. Same as MoveAtVel command
except specified motion is relative to current destination. Axis should be already enabled. Uses
Accel and Jerk parameters for the axis to profile a motion from the current state to the specified
position.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

new position in position units. Valid range - any.

<V>

Desired Velocity for the Motion. Valid range - any.

Example

MoveRelAtVel0=100.1 30.0

MoveXYZABC <X> <Y> <Z> <A> <C>

Description

Move the 4 axes defined to be x,y,z,A (each axis moves independently). The defined coordinate
system determines which axes channels are commanded to move.

Parameters

http://www.dynomotion.com/Help/Cmd.htm#MoveAtVel
http://www.dynomotion.com/Help/Cmd.htm#Accel
http://www.dynomotion.com/Help/Cmd.htm#Jerk
http://www.dynomotion.com/Help/CoordinatedMotion.htm
http://www.dynomotion.com/Help/CoordinatedMotion.htm

KFLOP User Manual 2016

167 | P a g e

<X>

Position to move x axis. Valid range - any.

<Y>

Position to move y axis. Valid range - any.

<Z>

Position to move z axis. Valid range - any.

<A>

Position to move a axis. Valid range - any.

Position to move b axis. Valid range - any.

<C>

Position to move c axis. Valid range - any.

Example

MoveXYZABC 100.1 200.2 300.3 400.4 500.5 600.6

OpenBuf

Description

Clear and open the buffer for coordinated motion.

Parameters

None

Example

OpenBuf

http://www.dynomotion.com/Help/CoordinatedMotion.htm

KFLOP User Manual 2016

168 | P a g e

OutputChan<M> <N>=<C>

or

OutputChan<M> <N>

Description

Get or Set the first or second Output Channel of an axis. See description of this parameter on the
Configuration Screen.

Parameters

<M>

Selected input channel. Valid range 0...1.

<N>

Selected Axis for command. Valid range 0...7.

<C>

Channel number to assign. Valid range 0...7.

Example (set first output channel of axis 3 to 3)

OutputChan03=3

OutputGain<N>=<G>

or

OutputGain<N>

Description

Get or Set the Output Gain of an axis. For Axes of Step/Dir, CL Step Dir, or MicroStep output mode,
the output motion can be scaled or reversed. Normally there is no need to use a value other than -
1.0 or +1.0. For DAC Servo output mode the output signal (DAC) can be scaled or reversed. Again,
normally there is no need to use a value other than -1.0 or +1.0. In other output modes the
OutputGain value will have no effect.

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Input_Channels

KFLOP User Manual 2016

169 | P a g e

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<G>

Gain value. Valid range any floating point value.

Example

OutputGain0=-1.0

or

OutputGain0

OutputOffset<N>=<O>

or

OutputOffset<N>

Description

Get or Set the Output Offset of an axis. For DAC Servo output mode the output (DAC) signal can be
offset. The Output Offset is applied after any Output Gain value. The Output Offset can be used to
reduce any DAC output offset or Amplifier input offset that may cause motor axis drift occurs when
the DAC is commanded to zero (disabled). In other output modes the OutputGain value will have no
effect.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<G>

Gain value. Valid range any floating point value.

Example

http://www.dynomotion.com/Help/Cmd.htm#OutputGain

KFLOP User Manual 2016

170 | P a g e

OutputGain0=-1.0

or

OutputGain0

OutputMode<N>=<M>

or

OutputMode<N>

Description

Set or get the position output mode for an axis. See description of this parameter on the
Configuration Screen.

Valid modes are (from PC_DSP.h):

#define NO_OUTPUT_MODE 0
#define MICROSTEP_MODE 1
#define DC_SERVO_MODE 2

#define BRUSHLESS_3PH_MODE 3
#define BRUSHLESS_4PH_MODE 4
#define DAC_SERVO_MODE 5
#define STEP_DIR_MODE 6

#define CL_STEP_DIR_MODE 7
#define CL_MICROSTEP_MODE 8

 Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Mode. Valid range 1...4

Example

SetOutputMode0=1

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Axis_Modes

KFLOP User Manual 2016

171 | P a g e

P<N>=<M>

or

P<N>

Description

Get or Set PID Proportional Gain.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Proportional Gain value. The units of the derivative gain are in Output Units/Position Units.

Example

P0=10.0

Pos<N>=<P>

or

Pos<N>

Description

Set or get the measured position of an axis. Note setting the current position may effect the
commutation of any motors based on the position (an adjustment in the commutation offset may be
required).

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<P>

http://www.dynomotion.com/Help/StepScreen/StepScreen.htm#PID
http://www.dynomotion.com/Help/Glossary.htm#Position
http://www.dynomotion.com/Help/Cmd.htm#CommutationOffset

KFLOP User Manual 2016

172 | P a g e

value to be stored into the current position. units are position units. Valid range - any.

Example

Pos0=100.0

ProgFlashImage

Description

Program entire FLASH image, downloaded using LoadFlash commands, to FLASH Memory.

Parameters

None

Example

ProgFlashImage

PWM<N>=<M>

Description

Set PWM channel to locked anti-phase mode and to specified value.

See PWM Description and Analog Status Screen.

Parameters

<N>

PWM channel number. Valid range 0...7

<M>

PWM value. Valid range -255...255.

Example

PWM0=-99

PWMC<N>=<M>

http://www.dynomotion.com/Help/Cmd.htm#LoadFlash
http://www.dynomotion.com/Help/Glossary.htm#locked_anti-phase_mode
http://www.dynomotion.com/Help/PWM_Description/PWM_Description.htm
http://www.dynomotion.com/Help/AnalogIOScreenKFLOP/AnalogIOScreen.htm#PWMs

KFLOP User Manual 2016

173 | P a g e

Description

Set PWM channel to Current Mode and to specified value. PWM Channel will operate in closed loop
current mode.

See Analog Status Screen.

Parameters

<N>

PWM channel number. Valid range 0...7

<M>

PWM value. Valid range -1000...1000. 1 count = 35 Amps/1024 = 34.2ma

Example

PWM0=-99

PWMR<N>=<M>

Description

Set PWM channel to recirculate mode and to specified value.

See PWM Description and Analog Status Screen.

Parameters

<N>

PWM channel number. Valid range 0...7

<M>

PWM value. Valid range -511...511.

Example

PWMR0=-99

ReadBit<N>

http://www.dynomotion.com/Help/AnalogIOScreenKFLOP/AnalogIOScreen.htm#PWMs
http://www.dynomotion.com/Help/Glossary.htm#recirculate_mode
http://www.dynomotion.com/Help/PWM_Description/PWM_Description.htm
http://www.dynomotion.com/Help/AnalogIOScreenKFLOP/AnalogIOScreen.htm#PWMs

KFLOP User Manual 2016

174 | P a g e

Description

Displays whether an actual hardware I/O bit N (0...30) or Virtual IO bit (32...63) is high (1) or low (0)
. A bit defined as an output (See SetBitDirection) may also be read back.

Parameters

<N>

Bit number to read. Valid range - 0...63

Example

ReadBit0

Reboot!

Description

Causes complete power up reset and re-boot from flash memory.

Parameters

None

Example

Reboot!

SetBit<N>

Description

Sets an actual hardware I/O bit N (0...30) or Virtual IO bit (32...63) to high (1) .

Parameters

<N>

Bit number to set. Valid range 0...63

Example

SetBit0

http://www.dynomotion.com/Help/Cmd.htm#SetBitDirection

KFLOP User Manual 2016

175 | P a g e

SetBitBuf<N>

Description

Inserts into the coordinated move buffer a command to set an I/O bit N(0...30) or Virtual IO bits
(32...63) (actual IO bits must be defined as an output, see SetBitDirection)

Parameters

<N>

Bit number to set. Valid range 0...63

Example

SetBitBuf0

SetBitDirection<N>=<M>

Description

Defines the direction of an I/O bit to be an input or output.

See also Digital I/O Screen.

Parameters

<N>

Bit number to assign. Valid range 0...30

<M>

Direction 0 = input, 1 = output

Example

SetBitDirection0=1

SetFRO <F>

Description

http://www.dynomotion.com/Help/CoordinatedMotion.htm
http://www.dynomotion.com/Help/Cmd.htm#SetBitDirection
http://www.dynomotion.com/Help/DigitalIOScreenKFLOP/DigitalIOScreen.htm

KFLOP User Manual 2016

176 | P a g e

Sets Hardware FRO (Feed Rate Override) in KFLOP which is the rate that the Coordinated Motion
Buffer is executed. A value of 1.0 = Normal Feed Rate = real time = an advance of 90us of time
every 90us Servo Sample Period.

A negative FRO value will cause the Coordinated Motion Buffer to execute in reverse up until the
beginning or until the point where Coordinated Motion Buffer data has been lost due to buffer
wrapping (MAX_SEGMENTS is currently ~35,000 segments). When approaching the point where
previous data was lost, the FRO will be automatically reduced to zero in order to avoid an abrupt
stop. This will not occur (and should not be necessary) when approaching the actual beginning of
the buffer because normal acceleration from a stop should exist. In this case Time will stop abruptly
when the beginning of the buffer is reached.

In order to avoid an instantaneous change in velocity the FRO will be ramped from the current rate
to the specified rate. This command uses a default ramp rate that has been determined based on
the Max Allowed Velocities, Accelerations, and Jerks of all the currently defined Coordinate Motion
System Axes Channels. In order to specify a different rate the SetFROwRate command may be
used.

This command will not alter the rate of execution if the FeedHold mechanism is currently in
effect. See StopImmediate. However the specified speed will be saved so that if FeedHold is
eventually released, the rate will resume to this specified speed. To change the FRO while in
FeedHold use the SetFROTemp or SetFROwRateTemp commands instead. Those commands
were intended to be used while in Feed Hold and will not alter the rate that will be resumed after
Feed Hold is released.

 Parameters

<F>

Desired FRO Value. 1.0 corresponds to normal Real Time, 0.0 corresponds to fully stopped,
negative values drive time in reverse. Valid range -100...+100

Example

SetFRO 1.2

SetFROTemp <F>

Description

Sets Hardware FRO (Feed Rate Override) in KFLOP which is the rate that the Coordinated Motion
Buffer is executed. A value of 1.0 = Normal Feed Rate = real time = an advance of 90us of time
every 90us Servo Sample Period.

This command is intended for temporary FRO changes while in Feed Hold.

http://www.dynomotion.com/Help/Cmd.htm#SetFROwRate
http://www.dynomotion.com/Help/Cmd.htm#StopImmediate
http://www.dynomotion.com/Help/Cmd.htm#SetFROTemp
http://www.dynomotion.com/Help/Cmd.htm#SetFROwRateTemp

KFLOP User Manual 2016

177 | P a g e

See SetFRO for additional Information.

 Parameters

<F>

Desired FRO Value. 1.0 corresponds to normal Real Time, 0.0 corresponds to fully stopped,
negative values drive time in reverse. Valid range -100...+100

Example

SetFROTemp -0.2

SetFROwRate <F> <R>

Description

Sets Hardware FRO (Feed Rate Override) in KFLOP which is the rate that the Coordinated Motion
Buffer is executed. A value of 1.0 = Normal Feed Rate = real time = an advance of 90us of time
every 90us Servo Sample Period. This command functions the same as the command SetFRO
with the exception that the rate at which the FRO will be ramped to the new FRO may be
controlled. The ramp rate (rate-of-change-of-rate-of-time) to be used is determined from a user
supplied Time Parameter. The Time to ramp from FRO=0. to FRO=1.0. See SetFRO for more
information.

Parameters

<F>

Desired FRO Value. 1.0 corresponds to normal Real Time, 0.0 corresponds to fully stopped,
negative values drive time in reverse. Valid range -100...+100

<R>

Time to ramp from FRO=0.0 to FRO=1.0 Valid range any positive number.

Example

SetFROwRate 1.2 0.5

SetFROwRateTemp <F> <R>

http://www.dynomotion.com/Help/Cmd.htm#SetFRO
http://www.dynomotion.com/Help/Cmd.htm#SetFRO

KFLOP User Manual 2016

178 | P a g e

Description

Sets Hardware FRO (Feed Rate Override) in KFLOP which is the rate that the Coordinated Motion
Buffer is executed. A value of 1.0 = Normal Feed Rate = real time = an advance of 90us of time
every 90us Servo Sample Period. This command functions the same as the command
SetFROTemp with the exception that the rate at which the FRO will be ramped to the new FRO may
be controlled. The ramp rate (rate-of-change-of-rate-of-time) to be used is determined from a user
supplied Time Parameter. The Time to ramp from FRO=0. to FRO=1.0.

This command is intended for temporary FRO changes while in Feed Hold.

See SetFRO for additional Information.

Parameters

<F>

Desired FRO Value. 1.0 corresponds to normal Real Time, 0.0 corresponds to fully stopped,
negative values drive time in reverse. Valid range -100...+100

<R>

Time to ramp from FRO=0.0 to FRO=1.0 Valid range any positive number.

Example

SetFROwRateTemp -0.2 0.5

SetGatherDec <N> <M>

Description

Writes a single word to the Gather Buffer at the specified offset. A single 32-bit value specified as a
signed decimal integer number will be stored.

The corresponding value may be accessed by a KMotion user program using the pointer :
gather_buffer. This pointer should be cast as an integer pointer in order to reference values as
integers and to use the same index.

See also GetGatherDec, GetGatherHex, SetGatherHex

http://www.dynomotion.com/Help/Cmd.htm#SetFRO
http://www.dynomotion.com/Help/data_gathering.htm
http://www.dynomotion.com/Help/Cmd.htm#GetGatherDec
http://www.dynomotion.com/Help/Cmd.htm#GetGatherHex
http://www.dynomotion.com/Help/Cmd.htm#SetGatherHex

KFLOP User Manual 2016

179 | P a g e

Parameters

<N>

Offset into gather buffer, specified as a decimal offset of 32 bit words. Valid range 0...1999999

<M>

Value to be stored. Valid range -2147483648...2147483647

Example

SetGatherDec 1000 32767

SetGatherHex<N> <M>

<H> <H> <H> . . .

Description

Writes a multiple words to the Gather Buffer beginning at the specified offset. 32-bit values specified
as a unsigned hexadecimal numbers must follow with 8 words per line separated with spaces. Since
this command spans several lines, it may only be used programmatically in conjunction with a
KMotionLock or WaitToken command so that it is not interrupted.

The corresponding values may be accessed by a KMotion user program using the pointer :
gather_buffer. This pointer should be cast as an integer pointer in order to reference values as
integers and to use the same index.

See also GetGatherDec, GetGatherHex, SetGatherDec

Parameters

<N>

Offset into gather buffer, specified as a decimal offset of 32 bit words. Valid range 0...1999999

<M>

Number of value to be stored, specified as a decimal number. Valid range 0...19999999

<H> <H> <H> . . .

Values to be stored. Specified as unsigned Hexadecimal values. Valid range 0...FFFFFFFF.

Example

http://www.dynomotion.com/Help/data_gathering.htm
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#KMotionLock
http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#WaitToken
http://www.dynomotion.com/Help/Cmd.htm#GetGatherDec
http://www.dynomotion.com/Help/Cmd.htm#GetGatherHex
http://www.dynomotion.com/Help/Cmd.htm#SetGatherDec

KFLOP User Manual 2016

180 | P a g e

SetGatherHex 0 3

FFFFFFFF FFFFFFFF FFFFFFFF

SetPersistDec <O> <D>

Description

Write a single word into the Persistent UserData Array. Persistent UserData Array is a general
purpose array of 100 32-bit words that may be used as commands, parameters, or flags between
any host applications or KMotion user programs. The array resides in a persistent memory area, so
that if a value is set as a parameter and the User Programs are flashed, the value will persist
permanently.

The corresponding value may be accessed by a KMotion user program as the integer variable :
persist.UserData[offset].

See also GetPersistDec, GetPersistHex, SetPersistHex

Parameters

<O>

Offset into the user data array specified as a decimal number. Valid Range 0 ... 99.

<D>

Value to be written to the array. Specified a signed decimal number. Valid Range -2147483648 ...

2147483647

Example

SetPersistDec 10 32767

SetPersistHex <O> <H>

Description

Write a single word into the Persistent UserData Array. Persistent UserData Array is a general
purpose array of 100 32-bit words that may be used as commands, parameters, or flags between
any host applications or KMotion user programs. The array resides in a persistent memory area, so
that if a value is set as a parameter and the User Programs are flashed, the value will persist
permanently.

http://www.dynomotion.com/Help/Cmd.htm#GetPersistDec
http://www.dynomotion.com/Help/Cmd.htm#GetPersistHex
http://www.dynomotion.com/Help/Cmd.htm#SetPersistHex

KFLOP User Manual 2016

181 | P a g e

The corresponding value may be accessed by a KMotion user program as the integer variable :
persist.UserData[offset].

See also GetPersistDec, GetPersistHex, SetPersistDec.

Parameters

<O>

Offset into the user data array specified as a decimal number. Valid range 0 ... 99.

<H>

Value to be written to the array. Specified an unsigned hexadecimal number. Valid range

0...FFFFFFFF

Example

SetPersistHex 10 FFFFFFFF

SetRapidFRO <F>

Description

Sets Hardware RFRO (Rapid Feed Rate Override) in KFLOP which is the rate that the Coordinated
Motion Buffer is executed. A value of 1.0 = Normal Feed Rate = real time = an advance of 90us of
time every 90us Servo Sample Period.

Note: KFLOP Maintain separate Rate Overides for Rapid motion vs normal Feed
Motion. Commands (BegRapidBuf and EndRapidBuf) inserted into the Coordinated Motion Buffer
determine what type of motion is currently in progress and which Override is to be used.

A negative RFRO value will cause the Coordinated Motion Buffer to execute in reverse up until the
beginning or until the point where Coordinated Motion Buffer data has been lost due to buffer
wrapping (MAX_SEGMENTS is currently ~35,000 segments). When approaching the point where
previous data was lost, the RFRO will be automatically reduced to zero in order to avoid an abrupt
stop. This will not occur (and should not be necessary) when approaching the actual beginning of
the buffer because normal acceleration from a stop should exist. In this case Time will stop abruptly
when the beginning of the buffer is reached.

In order to avoid an instantaneous change in velocity the RFRO will be ramped from the current rate
to the specified rate. This command uses a default ramp rate that has been determined based on
the Max Allowed Velocities, Accelerations, and Jerks of all the currently defined Coordinate Motion

http://www.dynomotion.com/Help/Cmd.htm#GetPersistDec
http://www.dynomotion.com/Help/Cmd.htm#GetPersistHex
http://www.dynomotion.com/Help/Cmd.htm#SetPersistDec
http://www.dynomotion.com/Help/Cmd.htm#BegRapidBuf
http://www.dynomotion.com/Help/Cmd.htm#EndRapidBuf

KFLOP User Manual 2016

182 | P a g e

System Axes Channels. In order to specify a different rate the SetRapidFROwRate command may
be used.

This command will not alter the rate of execution if the FeedHold mechanism is currently in
effect. See StopImmediate. However the specified speed will be saved so that if FeedHold is
eventually released, the rate will resume to this specified speed. To change the FRO while in
FeedHold use the SetFROTemp or SetFROwRateTemp commands instead. Those commands
were intended to be used while in Feed Hold and will not alter the rate that will be resumed after
Feed Hold is released.

Parameters

<F>

Desired RFRO Value. 1.0 corresponds to normal Real Time, 0.0 corresponds to fully stopped,
negative values drive time in reverse. Valid range -100...+100

Example

SetRapidFRO 1.2

SetRapidFROwRate <F> <R>

Description

Sets Hardware RFRO (Rapid Feed Rate Override) in KFLOP which is the rate that the Coordinated
Motion Buffer is executed. A value of 1.0 = Normal Feed Rate = real time = an advance of 90us of
time every 90us Servo Sample Period. This command functions the same as the command
SetRapidFRO with the exception that the rate at which the RFRO will be ramped to the new RFRO
may be controlled. The ramp rate (rate-of-change-of-rate-of-time) to be used is determined from a
user supplied Time Parameter. The Time to ramp from FRO=0. to FRO=1.0. See SetRapidFRO for
more information.

Note: KFLOP Maintain separate Rate Overrides for Rapid motion vs normal Feed
Motion. Commands (BegRapidBuf and EndRapidBuf) inserted into the Coordinated Motion Buffer
determine what type of motion is currently in progress and which Override is to be used.

Parameters

<F>

Desired RFRO Value. 1.0 corresponds to normal Real Time, 0.0 corresponds to fully stopped,
negative values drive time in reverse. Valid range -100...+100

<R>

http://www.dynomotion.com/Help/Cmd.htm#SetRapidFROwRate
http://www.dynomotion.com/Help/Cmd.htm#StopImmediate
http://www.dynomotion.com/Help/Cmd.htm#SetFROTemp
http://www.dynomotion.com/Help/Cmd.htm#SetFROwRateTemp
http://www.dynomotion.com/Help/Cmd.htm#SetRapidFRO
http://www.dynomotion.com/Help/Cmd.htm#BegRapidBuf
http://www.dynomotion.com/Help/Cmd.htm#EndRapidBuf

KFLOP User Manual 2016

183 | P a g e

Time to ramp from RFRO=0.0 to RFRO=1.0 Valid range any positive number.

Example

SetRapidFROwRate 1.2 0.5

SetStartupThread<N> <M>

Description

Defines whether a user thread is to be launched on power up.

Parameters

<N>

Selected User Thread. Valid range 1...7

<M>

Mode : 1=start on boot, 0=do not start on boot.

Example

SetStartupThread0 1

SetStateBit<N>=<M>

Description

Sets the state of an actual hardware I/O bit N (0...30) or Virtual IO bit (32...63) to either low (0) or
high (1) . Actual I/O bits must be defined as an output, see SetBitDirection.

Parameters

<N>

Bit number to set. Valid range 0...63

<M>

http://www.dynomotion.com/Help/Cmd.htm#SetBitDirection

KFLOP User Manual 2016

184 | P a g e

State. Valid range 0...1

Example

SetStateBit0=1

SetStateBitBuf<N>=<M>

Description

Inserts into the coordinated move buffer a command to set the state of an I/O bit N(0...30) or Virtual
IO bits (32...63) (actual IO bits must be defined as an output, see SetBitDirection)

Parameters

<N>

Bit number to set. Valid range 0...63

<M>

State. Valid range 0...1

Example

SetBitBuf0

SetStateBitBuf0=1

SlaveGain<N>=<S>

or

SlaveGain<N>

Description

Sets or gets the Slave Gain for the axis. See also MasterAxis for more information

Parameters

<N>

Selected Axis for command. Valid range 0 ... 7.

http://www.dynomotion.com/Help/CoordinatedMotion.htm
http://www.dynomotion.com/Help/Cmd.htm#SetBitDirection
http://www.dynomotion.com/Help/Cmd.htm#MasterAxis

KFLOP User Manual 2016

185 | P a g e

<S>

Slave Gain. Any floating point value positive or negative.

Example

SlaveGain0=-1.0

or

SlaveGain0

SoftLimitNeg<N>=<M>

or

SoftLimitPos<N>

Description

Command to set or display the Negative Software Limit of Travel. Soft Limits will prevent motion in
the same manner as a Hardware Limit with the Stop Movement Action Selected. This occurs
regardless of the Action Type Selected for the Hardware Limit Switches. To disable Soft Limits set
them to a huge range which could never occur. Soft Limits prevent motion within KFLOP when
Jogging, moving and so forth. They also are are uploaded by Applications such as KMotionCNC
and used to prevent motion during Trajectory Planning. The Negative Soft Limit is used to prevent
motion beyond a limit in the negative direction. The Negative Soft Limit does not necessarily need
to be negative. See also SoftLimPos.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Maximum Negative Limit. Valid range - any value. Set to a large value to disable.

Example

SoftLimNeg0=-1000000.0

http://www.dynomotion.com/Help/Cmd.htm#SoftLimitPos
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/Glossary.htm%23Large_Value

KFLOP User Manual 2016

186 | P a g e

or

SoftLimNeg0

SoftLimitPos<N>=<M>

or

SoftLimitPos<N>

Description

Command to set or display the Positive Software Limit of Travel. Soft Limits will prevent motion in
the same manner as a Hardware Limit with the Stop Movement Action Selected. This occurs
regardless of the Action Type Selected for the Hardware Limit Switches. To disable Soft Limits set
them to a huge range which could never occur. Soft Limits prevent motion within KFLOP when
Jogging, moving and so forth. They also are are uploaded by Applications such as KMotionCNC
and used to prevent motion during Trajectory Planning. The Positive Soft Limit is used to prevent
motion beyond a limit in the positive direction. The Positive Soft Limit does not necessarily need to
be positive. See also SoftLimitNeg.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

Maximum Positive Limit. Valid range - any value. Set to a large value to disable.

Example

SoftLimPos0=1000000.0
or

SoftLimPos0

StepperAmplitude<N>=<M>

http://www.dynomotion.com/Help/Cmd.htm#SoftLimitNeg
http://www.dynomotion.com/Help/Glossary.htm#Large_Value

KFLOP User Manual 2016

187 | P a g e

or

StepperAmplitude<N>

Description

Set or get the nominal output magnitude used for axis if in MicroStepping Output Mode to the
specified value. This will be the output amplitude when stopped or moving slowly. If Lead
Compensation is used, the amplitude while moving may be higher.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

<M>

PWM Stepper Amplitude. Valid range 0...255

Example

StepperAmplitude0=250

StopImmediate<M>

Description

Controls the Feedhold Mechanism for the set of coordinated motion Axes. This command can be
used to feedhold (bring to an immediate stop) the set of axes, Resume from a feedhold, or clear the
feedhold state. This command can stop the set of axes regardless of whether the current motion in
progress is due to coordinated motion (Interpolated Linear or Arc) or independent axes motions
(Rapids). The current state can be obtained using the GetStopState command.

Parameters

<M>

Mode

0 - Stops the axes motion (equivalent to User C Program function StopCoordinatedMotion)
1 - Resumes the axes motion (equivalent to User C Program function ResumeCoordinatedMotion)
2 - Clears the Feed hold state (equivalent to User C Program function ClearStopImmediately)

http://www.dynomotion.com/Help/Cmd.htm#OutputMode
http://www.dynomotion.com/Help/Cmd.htm#Lead
http://www.dynomotion.com/Help/Cmd.htm#Lead
http://www.dynomotion.com/Help/Cmd.htm#GetStopState

KFLOP User Manual 2016

188 | P a g e

Example

StopImmediate0

TrigThread <S>

Description

Triggers a coordinated motion threading operation. The coordinated motion path in the coordinated
motion buffer begins execution synchronized with the Spindle motion. The Speed specified will be
used as the baseline speed such that if the actual spindle speed is equal to the base speed, then
Pseudo Time will progress the same as real time. Otherwise Pseudo time will be adjusted to match
the spindle motion

See also: ConfigSpindle and GetSpindleRPS

Parameters

<S>

Base Spindle Speed in revs per second. Range: Any floating point value.

Example

TrigThread 10.0

Vel<N>=<V>

or

Vel <N>

Description

Get or Set the max velocity for independent moves.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

http://www.dynomotion.com/Help/Cmd.htm#ConfigSpindle
http://www.dynomotion.com/Help/Cmd.htm#GetSpindleRPS

KFLOP User Manual 2016

189 | P a g e

<V>

The max velocity. Units are in Position units per sec

Example

Vel0=100.0

Version

Description

Display DSP Firmware Version and Build date in the form:.

KMotion 2.22 Build 22:26:57 Feb 16 2005

Note it is important that when C Programs are compiled and linked, they are linked to a firmware
file, DSP_KMotion.out, that matches the firmware in the KMotion where they will execute.

Parameters

None

Example

Version

WaitBitBuf<N>

Description

Inserts into the coordinated move buffer a command to wait for an IO bit to be at a high
level. Buffered IO bits are currently limited to the first 255 IO bits. This command is useful for
synchronizing motion to external events without any PC delays.

This command can be inserted into the Coordinated motion buffer from KMotionCNC GCode using
the special comment command format of:

(BUF,WaitBitBuf46)

Parameters

KFLOP User Manual 2016

190 | P a g e

<N>

Bit number to wait to be high. Valid range 0...255

Example

WaitBitBuf46

WaitNotBitBuf<N>

Description

Inserts into the coordinated move buffer a command to wait for an IO bit to be at a low level. This
command is useful for synchronizing motion to external events without any PC delays.

This command can be inserted into the Coordinated motion buffer from KMotionCNC GCode using
the special comment command format of:

(BUF,WaitNotBitBuf46)

 Parameters

<N>

Bit number to wait to be low. Valid range 0...2047

Example

WaitNotBitBuf46

Zero<N>

Description

Clear the measured position of axis. Note for an axis that uses the Position to perform brushless
motor commutation, the commutation offset may be required to be adjusted whenever the position
measurement is changed.

Parameters

<N>

Selected Axis for command. Valid range 0...7.

http://www.dynomotion.com/Help/Glossary.htm#Position
http://www.dynomotion.com/Help/Cmd.htm#CommutationOffset

KFLOP User Manual 2016

191 | P a g e

Example

Zero0

KFLOP User Manual 2016

192 | P a g e

KFLOP User Manual 2016

193 | P a g e

Using Multiple KMotion Boards

The KMotion Driver Library allows multiple PC processes (applications), each running multiple
threads of execution, to communicate with multiple KMotion boards simultaneously. Each KMotion
board is identified by a USB location identifier where it is connected. A USB location identifier is a
32 bit integer. USB devices are arranged in a tree structure of hubs and nodes. Each hexadecimal
digit of the USB location specifies a branch in the tree structure. For the purposes of the KMotion
Driver Library, a USB location identifier may simply be considered a unique integer that will remain
the same as long as the structure of the USB tree is not altered. Adding or removing USB devices
will not change the location of a connected KMotion board.

Selecting the USB Locations menu of the KMotion Setup and Tuning application, will display a list
of all currently connected KMotion boards. The Checkmark indicates which board the application is
currently communicating with. To switch to a different board, select the USB location from the list.

When launching the KMotion Setup and Tuning application, a command line parameter may be
specified to connect to a specific USB location (see below on how to setup a shortcut to connect to
a specific location). Multiple shortcuts may be setup to connect to individual boards.

KFLOP User Manual 2016

194 | P a g e

The KMotion Driver Library has a function to list the USB locations of all currently connected
KMotion boards. See:

int ListLocations(int *nlocations, int *list);

When making KMotion Driver Library function calls specify the USB location identifier of the desired
board as the board parameter shown in the example below. Specifying a board value of 0 may be
used if there is only one board in a particular system. This will result in a connection to the first
available board.

int CKMotionDLL::WriteLineReadLine(int board, const char *s, char

*response)

http://www.dynomotion.com/Help/KMotionDLLDriver/KMotionDLL.htm#ListLocations

KFLOP User Manual 2016

195 | P a g e

KMotion/KFlop Preemptive Multitasking

KMotion/KFlop uses a simple method of preemptive multitasking (multiple programs or "Threads"
running at the same time). Each Thread consists of an area of memory where a program can be
loaded, A CPU Stack for that program, and a potential time slice of the CPU. User Programs
(Threads) and the System Thread context switch every Servo Interrupt and sequence in a round
robin order.

The main thing to understand is that two programs that ever need to be running at the same time
need to be assigned to different threads. The KFLOP system Thread runs all the time in Thread #0.
So Thread #0 may never be used. In a typical KMotionCNC system the Init.c program is usually
assigned to thread #1 and runs forever. If other UserButtons (or MCodes) run C Programs that do
something and terminate (Exec/Wait option) then these might all be assigned to use Thread#2. If
your programs run for a longer time where a 3rd or 4th program might be Launched so they all
overlap in time, then they must all be assigned to different Threads.

All Threads are killed (stop executing) when the Big Red Stop Button is pushed - except for thread
#7. So use thread #7 for anything you wish to continue to run after a Stop.

The above example shows a case where two User Threads are currently active.

The C function WaitNextTimeSlice() can be used to wait until the next context switch occurs and
return immediately at the beginning of the next time slice. This can assure that the User Program
can execute for a few microseconds without being interrupted and at a very stable rate (with a few
microseconds of jitter).

The time period between executions of each user thread is a function of the number of active User
Threads:

Period = (# User Threads + 1) * TIMEBASE

KFLOP User Manual 2016

196 | P a g e

KFLOP - RS232

KFLOP contains a UART that can allow KFLOP User C Programs to perform serial communication
with other 3rd party devices.

KFLOP itself contains the serial communication UART but does not have the circuitry to drive or
receive the signals at the +3 to 25V to -3 to -25V voltages levels specified by the RS232 standard.
The transmit and receive signals to/from KFLOP are 3.3V LVTTL logic signals. Where a low logic
level (<0.4V) represents the RS232 Space Level (>+3V) and a high logic level represents the
RS232 Mark Level (< -3V).

Note that the signals that the signals coming directly from KFLOP are not RS232 compatible.
Connecting KFLOP inputs directly to RS232 is likely to cause damage.

Some serial devices may be compatible with 3.3V logic. Also many 3rd party converters are
available. A Internet search found this one (we haven't tested it).

http://www.commfront.com/TTL-RS232-RS485-Serial-Converters/RS232-TTL3.3V-Converter.htm

Our Kanalog board has a LVTTL to converter on board (see next section below).

http://www.commfront.com/TTL-RS232-RS485-Serial-Converters/RS232-TTL3.3V-Converter.htm

KFLOP User Manual 2016

197 | P a g e

KFLOP + Kanalog - RS232

Kanalog contains circuitry to convert the KFLOP UART logic levels to standard RS232 voltage
levels. The RS232 signals are accessible from JP10 which is a standard RJ12 phone jack.

The pinout is shown below. The pinout is designed to be 1:1 compatible with certain PLC devices.
Note that a phone cable with all 6 wires populated is required in order to make the pin 1 ground
connection.

KFLOP UART Software

The KFLOP FPGA implements a programmable baud rate UART with double buffering of 1
character on transmit and receive. Currently a KFLOP User C program must be used to make use
of the UART. It is up to the User to program whatever is necessary to control any specific device.

KFlop User Programs with 1 active thread execute every 180us. (See here for more info). This
allows rates up t0 38400 baud without loss if a character is read every time slice (10 bits at
38400Hz = 260us). Data transmitted and received is always 8 bits. If parity is required it should be
handled by the User C program.

To set the baud rate write a defined 8-bit baud rate divisor to an FPGA Register
(RS232_BAUD_REG)

http://www.dynomotion.com/Help/Multitasking.htm

KFLOP User Manual 2016

198 | P a g e

To transmit a character an 8-bit character is written to an FPGA register (RS232_DATA).

To receive a character read an 8-bit value from an FPGA register (RS232_DATA)

A status register (RS232_STATUS) provides 2 bits of status that can be used to determine if a
character has been received (RS232_DATA_READY) and if it is possible to transmit a character
(RS232_TRANSMIT_FULL)

The following definitions have been added to the KMotionDef.h file.

//RS232 FPGA Register Definitions

#define RS232_STATUS 0xc1 // Status Reg Address

#define RS232_DATA 0xc0 // 8 bit data read/write reg address

#define RS232_DATA_READY 0x01 // Data ready to read status mask

#define RS232_TRANSMIT_FULL 0x02// Transmit buffer full status mask

#define RS232_BAUD_REG 0xc1 // Set Baud rate 8-bit divisor Reg Address

#define RS232_BAUD_115200 ((16666666/115200/16)-1)// 8-bit divisor value

to set 115200 baud

#define RS232_BAUD_57600 ((16666666/57600/16)-1) // 8-bit divisor value

to set 57600 baud

#define RS232_BAUD_38400 ((16666666/38400/16)-1) // 8-bit divisor value

to set 38400 baud

#define RS232_BAUD_19200 ((16666666/19200/16)-1) // 8-bit divisor value

to set 19200 baud

#define RS232_BAUD_9600 ((16666666/9600/16)-1) // 8-bit divisor value to

set 9600 baud

#define RS232_BAUD_4800 ((16666666/4800/16)-1) // 8-bit divisor value to

set 4800 baud

Note if KFLOP is to be used without Kanalog the UART IO pins must be activated by executing the
following line of code one time:

FPGA(KAN_TRIG_REG)=2;

Note the techniques shown below may be used but a new simpler and buffered method is
now available. See the \C Programs\RS232\BufferedRS232.c example

Transmit Example (RS232Send.c example)

#include "KMotionDef.h"

void SendChar(char c)

{

while (FPGA(RS232_STATUS) & RS232_TRANSMIT_FULL) ;

FPGA(RS232_DATA) = c;

}

KFLOP User Manual 2016

199 | P a g e

main()

{

int i;

SetBitDirection(45,1);

FPGA(RS232_BAUD_REG) = RS232_BAUD_38400;

// FPGA(KAN_TRIG_REG) = 1; // enable Kanalog to get RS232 working

for (i=0;i<100;i++)

{

SendChar('A');

}

}

Receive Example (RS232Read.c example)

#include "KMotionDef.h"

void ReceiveChar()

{

// wait for data in buffer

while ((FPGA(RS232_STATUS) & 1)==0);

return FPGA(RS232_DATA);

}

main()

{

SetBitDirection(45,1);

FPGA(RS232_BAUD_REG) = RS232_BAUD_38400;

// FPGA(KAN_TRIG_REG) = 1; // enable Kanalog to get RS232 working

for (;;)

{

while ((FPGA(RS232_STATUS) & RS232_DATA_READY) == 0) ;

printf("%X\n",ReceiveChar());

}

}

KFLOP User Manual 2016

200 | P a g e

G Code Quick
Reference

G Codes
G0 X3.5 Y5.0 Z1.0
A2.0 (Rapid move)

G1 X3.5 Y5.0 Z1.0
A2.0(linear move)
G2 X0.0 Y0.5 I0
J0.25 (CW Arc
move)
G3 X0.0 Y0.5 I0
J0.25 (CCW Arc
move)
G4 P0.25
(Dwell seconds)

G10L2Pn
G10L2P1X0Y0Z0
(Set Fixture Offset
#n)

G17 Arcs in XY
plane

G18 Arcs in XZ
plane

G19 Arcs in YZ
plane

G20 Inch units

G21 mm units

G28 Move to
Reference Position
#1

G30 Move to
Reference Position
#2

G40 Tool Comp Off
G41 Tool Comp On
(Left of Contour)
G42 Tool Comp On

(Right of Contour)

Other KMotionCNC Screens

G Code Viewer Screen
G Code Viewer Setup Screen
Tool Setup Screen

KMotionCNC allows the user to edit, execute, and view G Code Programs. GCode is
a historical language for defining Linear/Circular/Helical Interpolated Motions often
used to program numerically controlled machines (CNC Machines).
KMotion has various screen "faces". The one shown above is for "Basic 6 axes".
Others may be selected on the Tool Setup Screen.

See the Quick Reference at left for commonly used G Code
commands.

http://www.dynomotion.com/Help/KMotionCNC/GCodeViewerScreen.htm
http://www.dynomotion.com/Help/KMotionCNC/GViewerSetup.htm
http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenM3.htm
http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenFiles.htm

KFLOP User Manual 2016

201 | P a g e

G43 Hn (Tool #n
length comp On)

G49
(Tool length comp
off)

G53 Absolute
Coord

G54 Fixture Offset
1

G55 Fixture Offset
2

G56 Fixture Offset
3

G57 Fixture Offset
4

G58 Fixture Offset
5

G59 Fixture Offset
6

G59.1 Fixture
Offset 7

G59.2 Fixture
Offset 8

G59.3 Fixture
Offset 9

G90 Absolute
Coordinates

G91 Relative
Coordinates

G92/G52 Set
Global Offset
G92 X0Y0Z0

G92.1 Clear
Global Offset

G92.2 Clear Leave
Vars

G92.3 Load Vars

G96 Spindle RPM
mode

Display

The 4 axis Display along the top of the screen
indicated the current position of each axis. The
units of the display are in either mm or inches
depending on the current mode of the interpreter
(see Coordinate System Units).

The displayed position will match the g -code
programmed position (i.e. last G1 commanded
position) which is not necessarily the actual
machine tool position if global or fixture offsets
are in use.

The color of the display gives an indication of
current status.

Green - indicates normal status, hardware is
connected, axis is enabled, and the displayed position is the current tool position in
GCode coordinates.

Orange - indicates normal status, hardware is connected, axis is enabled, and the
displayed position is the current tool position in Raw Machine Coordinates (G53
without any Global Offset (G92) or Fixture Offset (G54+).

White - indicates simulation mode is selected. The displayed position is the current
position after the last line of interpreted G code.

Yellow - indicates hardware disconnected or axis disabled. The displayed position is
invalid

Cyan - indicates normal status, hardware is connected, axis is enabled, and the
displayed position is the current measured tool position in GCode
coordinates. Available when Encoders or other feedback device is used and the
Encoder mode is selected on the Tool Setup | Trajectory Planner Screen.

http://www.dynomotion.com/Help/KMotionCNC/KMotionCNC.htm#Coordinate

KFLOP User Manual 2016

202 | P a g e

G97 Dmax CSS
mode

M Codes:
M0 (Program Stop)
M1 (Opt Program
Stop)
M2 (Program
End+Reset)
M3 Spindle CW

M4 Spindle CCW

M5 Spindle Stop

M6 Tool Change

M7 Mist On

M8 Flood On

M9 Mist/Flood Off
M30 (Program End)

M98 Pxxx Call
Subroutine

M99 Return from
Sub

Other Codes:
F (Set Feed rate
in/min or mm/min)
S (Spindle Speed)
D (Tool)
O Subroutine Label

Comments:
(Simple Comment)
(MSG,OK
toContinue?)
(CMD,EnableAxis0)
(BUF,SetBitBuf29)

More GCodes

Zero/Set Origin

Allows zeroing or setting the respective axis. This is accomplished by adjusting the
Global Offsets (G52/G92) or by adjusting the currently selected Fixture Offset. Which
offset is adjusted is determined by the Tool Setup Parameter described here. The
original Raw Machine Coordinates will remain unchanged, so the effect of these
operations will only be apparent if displaying Machine Coordinates is de-selected, see
below. For further information see system offsets.

Coordinate System Origin

When checked, the displayed position is the current tool position in
Raw Machine Coordinates (G53 without any Global offset (G92) or

Fixture Offset (G54+). Machine coordinates are relative to the fixed machine home
position.

Unchecked displays the normal GCode Coordinate relative to the "floating" origin
which may be moved by changing either the global offset (G92) and/or a Fixture
Offset.

Coordinate System Units / Mode

Displays the current mode of the G code interpreter.

G20 selects English Inch units
G21 selects Metric mm units

G90 selects Absolute Coordinates
G91 selects Relative Coordinates

http://www.dynomotion.com/Help/KMotionCNC/KMotionCNC.htm#Other_GCode_Commands
http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenTP.htm#Zero_Using_Fixture_Offsets
http://www.dynomotion.com/Help/KMotionCNC/GCodeOffsets.htm

KFLOP User Manual 2016

203 | P a g e

Keyboard Hot
Keys

ESC - Stop

F2 - KeyJog on/off
F3 - FeedHold

F5 - Run/Halt
F9 - Spindle On
CW

F10 - Spindle On
CCW

F11 - Spindle Off

KeyJog Mode

(shift=fast)
(ctrl=step)
x y - Arrow Keys

z - page up/down

A - num - +

Fixture Offset

Displays and allows changing of the current Fixture Offset.
KMotionCNC supports 9 Fixture offsets. Each Fixture may be
programmed to introduce an arbitrary x,y,z,a offset. Use the
G10L2Pn command to set the offset associated with the fixture #n.
An example might be:

G10 L2 P3 X10.0 Y20.0 Z30.0 which sets Fixture Offset #3 to
(10,20,30)

Executing the command G56 (or by selecting 3 - G56 in the drop down list) will cause
Fixture offset #3 to be in use in subsequent commands until a different Fixture is
selected. (See also - G Code Offsets).

The “set” button can be used to automatically compute and change
the current fixture offset so that the current position becomes the
new origin.

The “edit” button can be used to view, change, or save the fixture offsets. See
EditFixtureOffsets.

Tool

Displays and allows changing of the currently selected
Tool. KMotionCNC supports up to 99 tool definitions. GCode selects
tools using several different commands for different purposes. The
value displayed here is the value selected by the T command, which
is the tool to be loaded into the spindle by a automatic tool
changer. The T command is normally followed by a M6 command
that receives the tool number and physically loads the tool. Selecting
a tool in the the dropdown list will effectively cause a T#M6 command
to be executed, where # is the selected tool number. Tools can be

selected by either 4 digitID or 2 digit Slot numbers. The Dropdown displays the
available Tools defined in the tool table. If an ID is defined it will be displayed
otherwise the slot number will be displayed.

http://www.dynomotion.com/Help/KMotionCNC/GCodeOffsets.htm

KFLOP User Manual 2016

204 | P a g e

Hovering the mouse over the tool
selector will display a tool tip with
information regarding the tool.
Comment, Slot, ID, etc…

Besides changing tools with the T command, D and H commands are used to apply
tool properties from the tool table.

Tool Numbers can be referenced by either Tool ID as a 4 digit (or higher) number or by
Tool Slot as a 2 digit number.

A tool definition consists of a Tool Slot, Tool ID, the Length of the tool, the Diameter of
the tool, XY offsets, a descriptive Comment, and a VRML Image File. All parameters
are optional as long as either a Slot or ID is specified for each tool.

Note that the Tool Length can also be considered as a Z offset (Lathes often use this
terminology).

Executing the D# command will select which Tool parameters are to be used for radius
compensation (G40,G41,G42).

Executing the H# command will select which Tool parameters are to be used for XY
compensation (G43,G49).

The Tool definitions are saved in a text file that is selected on the ToolSetup Screen.
See below for an example Tool Table. There are 6 numeric and 2 alphanumeric
strings. The strings, including empty strings, must be enclosed in quotes:

SLOT ID LENGTH DIAMETER XOFFSET YOFFSET COMMENT IMAGE

1 1001 6.000000 0.125000 0.000000 0.000000 "Long Endmill" "EndMill-z 1in .125.wrl"
2 1002 2.000000 0.500000 0.000000 0.000000 "" "EndMill-z 2in .500.wrl"

0 1003 3.000000 0.500000 0.000000 0.000000 "" "EndMill-z.wrl"
7 1006 6.000000 0.000000 0.000000 0.000000 "" ""
25 1025 0.000000 0.000000 0.000000 0.000000 "" ""

0 2000 0.000000 0.000000 0.000000 0.000000 "Front NPTF Lathe tool" "NPTF Front.wrl"
0 2001 0.000000 0.000000 0.000000 0.000000 "Back VNMG Lathe Tool" "VNMG-1 back.wrl"

26 0 1.000000 0.250000 0.000000 0.000000 "" ""

KFLOP User Manual 2016

205 | P a g e

The Tool Table may also be edited in a window using the edit button.

The Tool Edit Screen displays 20 tools per page over 5 pages for a total of 99 possible
tools.

The normal idea is that all information regarding a tool is linked to a Tool ID. For a
particular GCode Job specific Tools can be loaded into specific Tool Changer Slots and
the corresponding slot numbers can be edited to reflect which tools are currently
loaded.

A “Sort” button is available that will sort the Tool Table order first by Tool ID and the by
Slot number.

The Tool Image file refers to a VRML 3D model of the Tool that will be used to display
the tool when shown in the GViewer Screen. All image files are normally located into
the <Install>\KMotion\Data\ToolImages Folder. VRML (Virtual Reality Modeling
Language) files normally have a .wrl file type extension. If located in the standard

location no path is required to be specified. Pushing the Browse Button will bring
up a File Selector Dialog with Preview that will display the available Tool Images as
well as the Tool Image origin. Note that Mouse Click Right, Left, Both can be used to
manipulate the View in the same manner as in the GViewer Screen. For creating your
own Tool Image files see information here.

http://www.dynomotion.com/Help/KMotionCNC/GViewerSetup.htm#Tool_Shape

KFLOP User Manual 2016

206 | P a g e

File New / Open/ Save

This group of pushbuttons allow a G Code file to be
loaded or saved to or from the edit window. The edit
window allows the user to quickly switch between 7

loaded G Code files. Once a file is loaded into one of the edit windows, the name of
that file will persist between sessions.

Execute Controls

This group of pushbuttons allow the control of G Code execution. Restart will reset

the instruction pointer to the first line of the file. Cycle Start will begin continuous

execution from where the current instruction pointer is located on the left of the edit
window. Single Step will execute one single line of G code where the current
instruction pointer is currently pointing. Note that the instruction pointer may be
moved to any line by right clicking on the line within the edit window and selecting Set
Next Statement. The Keyboard F5 Key can be used to toggle Cycle Start/Halt.

Halt (available when GCode is running) will cause a feedhold to be initiated so that
any coordinated tool motion will decelerate along the intended path. Once motion
comes to a complete stop, the GCode Interpreter will abort and back up to the state of
the line of GCode that created the current Tool motion.

KFLOP User Manual 2016

207 | P a g e

Show Tool Setup / G Code Viewer Screens

This group of buttons bring additional screens into view. The Tool
Setup Screen is used to configure the system's parameters.
Machine Axis distance/velocity/accelerations. M Code and User

Button Actions Actions, Tool and Setup definition files, and Jog Button and Joystick
rates. The G Code Viewer Screen allows real-time, 3D viewing of the machine tool
paths either during actual machine operation or during simulation.

G Code Edit Window

http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenM3.htm
http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenM3.htm
http://www.dynomotion.com/Help/KMotionCNC/GCodeViewerScreen.htm

KFLOP User Manual 2016

208 | P a g e

The Edit Window displays the loaded G-Code and allows editing. G-Code color
syntax highlighting makes the code more readable. A right mouse click will bring up
the context menu shown.

Unlimited Undo/Redo is supported by right mouse clicking or Ctrl-Z/Ctrl-Y hot keys.

Find and Replace are supported by right mouse clicking. Ctrl-F hot key for Find.

Set Next Statement can be used to move the current point of execution to the point
where the mouse was clicked. A reverse search and analysis of the preceding lines
will be performed to attempt to determine an appropriate starting position and
conditions for the specified line. A Safe/Resume process and movement may be
performed when execution is continued. Starting in the middle of a GCode sequence
can be complex. It is up to the Operator to make certain that the state and current
conditions are appropriate.

Note that Transform Sel will bring up a utility dialog (shown below) that allows the
selected G-Code to be scaled or offset.

Show/Hide Line numbers can be selected to display GCode Line numbers in the Left
Margin.

KFLOP User Manual 2016

209 | P a g e

File Selector

The file selector shows which of the 7 loaded G Code files is currently active
for editing. The Main Window Title also displays the loaded filename for the
selected file. The file number is highlighted in green when that file is currently
executing G Code. Only one G Code file is allowed to execute at a particular
time.

Simulate

Enables Simulation Mode which allows viewing and verification of a G Code
Program with or without any actual hardware connected. When Simulation
mode is enabled no actual machine motion will be made. Executing or
Single Stepping through a G Code program will change the Displayed

Position and Plot the machine tool path on the G Code Viewer Screen. In Simulation
Mode the Numeric Display Color changes to white to indicate the display is not
showing the actual machine tool position. While in Simulation mode the Jog Buttons
and Gamepad buttons will also change the displayed position and tool position on the
G Code Viewer Screen without causing any actual machine tool motion.

To perform a quick simulation for plotting or job extents verification the Run button
may be used. Note that certain Jobs with manual operations, probing, etc. may not
be possible to simulate.

Block Delete

When checked, any line with a single ‘/’ character at the beginning of the line
will be deleted (skipped). When unchecked the line will be executed normally
while ignoring the ‘/’ character. The Initial state of Block Delete can be
configured in the Tool Setup File.

http://www.dynomotion.com/Help/KMotionCNC/GCodeViewerScreen.htm
http://www.dynomotion.com/Help/KMotionCNC/KMotionCNC.htm#Display
http://www.dynomotion.com/Help/KMotionCNC/KMotionCNC.htm#Jog_Buttons
http://www.dynomotion.com/Help/KMotionCNC/KMotionCNC.htm#Jog_Buttons
http://www.dynomotion.com/help/kmotioncnc/ToolSetupScreenFiles.htm#Setup_File

KFLOP User Manual 2016

210 | P a g e

 Feed Hold

Feed Hold may be used to immediately
decelerate all axes to a controlled stop. Any
coordinated motion in progress will
decelerate along the defined buffered path.

When stopped in feed hold, the button will be shown in a toggled state. To resume
motion toggle the feed hold button off. Note that while stopped that the current GCode
line may be advanced one or more lines past the current tool position because the
Interpreter and Trajectory planner works ahead to allow motion to be buffered. Halt may
also be selected to exit the feedhold state. Halt will cause the Interpreter to abort and
back up to the GCode line that generated the current tool position.

Emergency Stop

Emergency Stop may be used to immediately stop all motion. Any
commands in motion will be aborted and all axes will be disabled. After
depressing Emergency Stop the system must be re-initialized and the
G Code Interpreter state will be lost. Use Halt to stop in a controlled
manner after the next line of GCode has been completed.

The ESC key may also be used to initiate an Emergency Stop whenever the
KMotionCNC Screen has the focus.

Manual Entry

The Manual Entry cell allows the user to quickly enter a single line of G Code and
Send it to the interpreter for execution. The last 10 entered commands are saved in a
drop down list for quick re-entry.

http://www.dynomotion.com/Help/KMotionCNC/KMotionCNC.htm#Execute_Controls

KFLOP User Manual 2016

211 | P a g e

Jog Buttons

The Jog buttons may be used to move any
of the axes. Pushing and holding any of the
arrow buttons will cause continuous motion.
There are 2 buttons in each direction for
each axis. The second button moves at
twice the rate as the first. The speeds for
each axis may be specified in the Tool Setup
Screen.

There is also a Step button (square dot) for
each axis and direction that will move an
exact step size (as specified in the step size
selection). The center button will stop a step
in progress (useful for aborting large steps).

A USB Gamepad such as the one shown
below may also be used to Jog the System.
Simply connect the Gamepad and it should
become immediately active. The left Joystick
controls x and y and the right joystick

controls z and a. The same speed parameters in the Tool Setup Screen control both
the Jog pushbuttons on the screen and the Gamepad.

The Jog buttons and Gamepad are also active in simulation mode

http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenTP.htm
http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenTP.htm

KFLOP User Manual 2016

212 | P a g e

Keyboard Jog

Toggling on Keyboard Jog allows keyboard keys that are normally
used for Windows navigation to be used for Jog Functions. These
include keys such as arrow, page up/down, +, - etc. Hovering the
mouse cursor over a Button will display a tool tip that indicates a

keyboard key that may be used instead of the mouse. Mouse clicking into an edit cell
that requires the use of arrow keys will automatically de select Keyboard Jogging. The
F2 key may be used to toggle Keyboard Jogging.

Feed/Spindle Rate Override

Feed Rate Override (FRO) provides a means to adjust the
feedrate while the machine is in operation without having
to modify the G Code. The Feed Rate is specified within
the G Code using the F command and the FRO is a
multiplicative factor that is applied to that value. For
example F100 would specify a Feed rate of 100
inches/minute (or 100 mm/minute if the interpreter is in
metric mm mode), with a FRO of 1.5 the actual attempted
feed rate would be 150 inches/minute (or 150 mm/minute
in mm mode).

Note that this speed will only be used if all the axes
involved will remain below the maximum allowed speeds
set on the Tool Setup Screen. Additionally, short vectors
with sharp corners (greater than the specified break angle)
that require stopping may be limited due to acceleration
limits. KMotionCNC uses complex algorithms to ensure

that velocities and accelerations remain below user specified limits. If the FRO or
(Specified Feed rate itself) doesn't seem to be having the expected result, check if the
maximum velocities and accelerations are limiting.

The FRO may be changed either by using the slider or by typing a value and pressing
the apply button.

Note that because motions are planned ahead and downloaded to the Motion
Controller ahead of time, that the FRO will take a short amount of time to have an
effect. The amount of time that the trajectory planner looks ahead is specified on the
Tool Setup Screen and is normally set at from 1 to 3 seconds. The main limitation to
making this value very short is the worst case response time of Microsoft Windows™
and the PC hardware being used.

Hardware Feed Rate Override (within KFLOP) can also be used for a more instant
response. However Hardware FRO may result in distorted accelerations. Users can
control how FRO is performed using the Feed Rate Override Hardware Range
Parameter.

http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenTP.htm
http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenTP.htm
http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenTP.htm#Feed_Rate_Override

KFLOP User Manual 2016

213 | P a g e

Two numbers at the top of the screen show the last commanded F (Feedrate) setting
and the actual instantaneous Feedrate. The actual Feedrate is also plotted as a bar
graph as a ratio of actual feed rate to last programmed feed rate.

There is also an independently adjustable Rapid Rate Override, This can be displayed
and adjusted by selecting the “rapid” selection. Rapid motions are performed in G Code

for G0 type of motion. Rapid Rate Override always uses Hardware Override and has an
instantaneous effect.

Feed Rate can be unsynchronized as distance per time for G1,G2, G3 types of motion,
or may be Spindle synchronized as distance per revolution for G32 types of
Synchronized Threading Motions. When synchronized threading operation is in

progress the Feed Rate Icon will be displayed as: instead of simply as for
normal operations.

Similar controls and displays exist for Spindle Control and correspond to the last
specified S value in the GCode.

Constant Surface Speed (CSS) is also supported which automatically varies the
Spindle Speed as a function of cutting Radius in order to maintain a constant surface
speed of the cutting tool across the material. G96/G97 Codes turn on and off this

mode. When operating in CSS mode the Spindle Icon will be displayed as: instead

of simply as for normal operations.

3 buttons allow the spindle to be turned on CW, on CCW, to the last specified S setting
and SSO. If Spindle Speed feedback is available in the system, the current spindle
speed (in RPM) and bar graph will display the ratio of actual Spindle Speed to last
programmed Spindle Speed.

Custom Buttons

KMotionCNC allows up to 5 Custom Buttons to be displayed
and defined for special operations. Which of these buttons

are visible, what they display as a title, and what action they perform are all definable
on the Tool Setup Screen.

The actions that the buttons perform are defined by the User in the same manner as the
actions that M Codes perform. These may be simple actions such as setting an Output to
turn something on or may be a complex operation that involves invoking a program.
Normally one or more buttons will be used to initialize and configure the motion controller
and/or home the machine.

http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenButtons.htm

KFLOP User Manual 2016

214 | P a g e

Other GCode Commands

KMotion's G Code interpreter was derived from the Open Source EMC G Code
Interpreter. Click here for the EMC User Manual (Only the G Code portions of the manual,
Chapters 10-14 pertain to KMotion G Code)

Specially coded comments embedded within a GCode program may be used to issue
KMotion Console Script commands directly to KMotion.

A comment in the form: (CMD,xxxxxx) will issue the command xxxxxx immediately to
KMotion as soon as it is encountered by the Interpreter. Any KMotion command that
does not generate a response may be used in this manner.

A comment in the form: (BUF,xxxxxx) will place the command xxxxxx into KMotion's
coordinated motion buffer. Coordinated motion sequences are download to a motion
buffer within KMotion before they are executed. This guarantees smooth uninterrupted
motion. The BUF command form allows a command to be inserted within the buffer so
they are executed at an exact time within the motion sequence. Only the following
KMotion Script commands may be used in this manner.

SetBitBuf, ClearBitBuf, SetStateBitBuf.

Additionally, a comment in the form: (MSG,xxxxxx) will pause GCode Execution and
display a pop-up message window displaying the message xxxxxxx.

http://www.dynomotion.com/Help/GCodeScreen/EMC_Handbook/node45.html

KFLOP User Manual 2016

215 | P a g e

G Code Viewer Screen

The G Code Viewer Screen displays the 3D motions of the machine tool as a GCode program is
executing. To Display an entire G Code Program quickly without any physical motion of the machine
tool, select Simulate on the main KMotionCNC Screen and execute the program. Linear and
Circular Feed Motions (G1, G2, G3) are displayed as green paths. Rapid Motions (G0) are
displayed as red lines. Note that rapid motions may not actually be performed as straight lines since
during rapid motions each axis moves independently as quickly as possible.

Click and drag the left mouse Button to translate up/down/left/right.

http://www.dynomotion.com/Help/KMotionCNC/KMotionCNC.htm#Simulate
http://www.dynomotion.com/Help/KMotionCNC/KMotionCNC.htm

KFLOP User Manual 2016

216 | P a g e

Click and drag the right mouse Button to translate closer or farther.

Click and drag both mouse Buttons to rotate.

Top/Side/Front Views

Use these buttons to view directly from the Top, Side, or Front respectively.
The camera is positioned at a distance away to view the entire box extents

or current path extents whichever is greatest.

This is a latching toggle button. When latched down rotation is in the x y plane about the
z axis. When unlatched, rotation is up/down/left/right.

Clears all path vectors. As a G Code Program executes motion paths are are saved and
displayed. Pushing this button clears all vectors from the internal buffer. All path vectors

are also automatically cleared when the first line of a G Code program executes.

These are three latching toggle buttons which determine whether the Axis,
Box, or Tool Shapes respectively are to be displayed. When latched down

the item is displayed. When latched up the item is hidden. The size and shape of these items may
be changed on the G Viewer Setup Screen.

This button brings up the G Viewer Setup Screen which allows some customization of the
G Code Viewer Screen.

http://www.dynomotion.com/Help/KMotionCNC/GViewerSetup.htm
http://www.dynomotion.com/Help/KMotionCNC/GViewerSetup.htm

KFLOP User Manual 2016

217 | P a g e

G Viewer Setup Screen

The G Viewer Setup Screen sets the imaging parameters for the G Code Viewer Screen.

Besides the G code tools paths, the G Code Viewer Screen displays several objects, namely a Tool,
a Box, and an Axis Symbol. The Tool Object and Axis Symbol are 3D VRML files that may be
changed if desired. KMotionCNC comes with default files shown below.

Tool Shape

The default Tool Shape is located at: <Install Dir>\KMotion\Data\Tool.wrl, but
maybe easily changed by entering or browsing to a new file. An excellent free
program to create VRML files is available at http://www.artofillusion.org. The
default Tool file is a 1 inch diameter sphere at the end of a 1 inch diameter
cylinder which is 3 inches long. In the VRML file the origin (0,0,0) is at the
center of the sphere. The Tool Scale and offsets allow the Tool Shape to be

shifted and scaled as desired. As shown above an offset of (0,0,0.5) shifts the tool such that the
origin is at the very tip of the tool. The scale of 0.15 then reduces the tool "size" from 1 inch to 0.15
inch. Specific Tool Shapes can be assigned to specific tools using the Tool Table.

http://www.dynomotion.com/Help/KMotionCNC/GCodeViewerScreen.htm
http://www.artofillusion.org/
http://www.dynomotion.com/Help/KMotionCNC/KMotionCNC.htm#Tool_Image_file

KFLOP User Manual 2016

218 | P a g e

Axis Scale

The Axis file name and location is hard coded as: <Install
Dir>\KMotion\Data\Axis.wrl. The Axis shape is always drawn at the origin. It's
size may be changed by changing the Axis Scale value. If a different Axis
Shape is desired the Axis.wrl file must be overwritten with a new file. When
Lathe Mode is selected a different Axis Style will be used based on the X
Positive Front Setting as either <Install Dir>\KMotion\Data\AxisLathe.wrl or
<Install Dir>\KMotion\Data\AxisLatheXFront.wrl.

Box

The Box serves two purposes. If enabled for display, it aids the 3D
visualization and perspective of the tool paths. It is also expected to represent
the working extents of the machine. When "zooming out" to one of the preset
Top, Side, or Front Views, it is used to frame the view extents. Therefore the
Box Size parameters should be set to the working extents of the
machine. With an offset of 0,0,0 the origin will be located at the center of the
Box. This is the preferred arrangement, however if required the Box may be

displayed offset by entering Box Offset values other than zero.

Include Rotational Axes

Includes the rotational effect of rotational axis if they represent a
type of cylindrical dimension at a relatively fixed radius. The A
axis rotates about the X Axis, the B axis rotates about the Y
axis, and the C axis rotates about the Z axis. The example view
below shows G Code plotted using B, Y , and Z Axes. The B

motion is wrapped around the Y axis. The Z motion then moves away from the Y axis, and the Y
motion is in the Y direction.

KFLOP User Manual 2016

219 | P a g e

Tool Setup Screen – M0 – M30

The Tool Setup Screen allows KMotionCNC to be configured for a particular machine tool. Each
machine tool is likely to have different motion resolution, speeds, and acceleration limits. It is also
likely to different I/O requirements with regard to Spindle control and such. Additionally a machine
may have different initialization and homing requirements. KMotionCNC has a flexible mechanism
for defining what type of action is to be performed for various M Codes and Custom Buttons.

KFLOP User Manual 2016

220 | P a g e

G Code Actions – M0 – M30

The M Codes 0 through 9 have functionality commonly used by most machine tools. These can
also be used as custom or general purpose M codes in the same manner as the M100-M119 M
codes with the exception of M5 and M9 which are automatically executed on Program Stop or
Rewind.

M0 - Program Stop

M1 - Optional Program Stop

M2 - Program Stop, Rewind, Reset Interpreter Settings

M3 - Spindle On CW

M4 - Spindle On CCW

M5 - Spindle Off - Note Automatically called on Program Stop/Rewind

M6 - Tool Change (T variable is passed to the C program in the persist variable specified)

M7 - Mist On

M8 - Flood On

M9 - Mist and Flood Off

S - Spindle Speed Setting. If C Program is specified Speed in RPM is passed to the specified
KFLOP Var as a 32-bit floating point number

M30 - Program Stop and Rewind

KFLOP User Manual 2016

221 | P a g e

Additionally, Actions can be performed when certain KMotionCNC functions occur. These include:

Cycle Start - Action performed when the Cycle Start Button is pressed and before GCode begins
execution

Halt - Action performed when the Halt Button is pressed after GCode stops execution. Commonly
used to execute a C Program to move the Z axis to a safe height and turn off the Spindle. See the
SafeZ_SpindleOff.c as an example.

Stop - Action performed after Stop Button is pressed

FeedHold - Action performed after Stop Button is pressed

Resume - Action performed after FeedHold is released

Program Start - Action performed at KMotionCNC Program Startup

Program Exit - Action before KMotionCNC Program Exits

The Action that can be performed can be one of several things:

 None

 Set or Reset one I/O Bit
 Set or Reset two I/O Bits

 Set a DAC to a variable's value (S parameter)
 Wait (stall motion) until an Input to be in the specified state

 Execute a C Program in the KMotion Control Board
 Execute a C Program in the KMotion Control Board + wait for it to terminate
 Execute a C Program in the KMotion Control Board + wait for it to terminate + resync

Interpreter positions

 Execute a Windows Program

To specify a particular action first select the Action Type. Each Action Type requires a different
number and type of parameters. Next fill in the appropriate parameters. The one and two bit I/O
commands are inserted directly into the coordinated motion control buffer. In this way they are
exactly synchronized with any motion before or after the I/O commands. This is useful in systems
where a fast shutter or other operation is required at precise times relative to the motion.

The five Action Types are described below:

For one I/O bit specify the I/O bit number and the state 0 or 1 to set it to.

KFLOP User Manual 2016

222 | P a g e

For two I/O bits specify the I/O bit numbers and the state 0 or 1 to set each to. Often systems with
two direction spindle control will require setting two outputs that control on/off and cw/ccw. This
command is designed to handle those situations.

For a special command to pause motion until an external Input is activated select Wait Bit and
specify the I/O bit number and the state 0 or 1 to wait for.

For DAC specify the DAC (Digital to analog converter) channel number, how to scale and offset the
associated variable, and the minimum and maximum allowed DAC settings. This command is
primarily designed for use with the S (Spindle speed) G Code Command

For Execute Prog specify the program Thread (1 through 7) where the program is to be
downloaded and executed, a Persist Variable (1-99) that will be set before the program executes,
and the name of the C Program to be Compiled, Downloaded, And Executed. If the Filename is left
blank, then it will be assumed that a program has been previously downloaded and will just be re-
executed. This method is very powerful in that anything that may be programmed in C may be
invoked. See the KMotion documentation for information on writing C Programs for the KMotion
Motion Control Board. There are a number of example C programs in the <Install Dir>\C Programs
folder. The Example "\KStep\InitKStep3Axis.c" s an example which completely configures all
necessary parameters in the KFLOP Board to drive 3 stepping motors using KSTEP's amplifiers.

KFLOP User Manual 2016

223 | P a g e

Tool Setup Screen - M100 - M119

The Tool Setup Screen allows KMotionCNC to be configured for a particular machine tool. Each
machine tool is likely to have different motion resolution, speeds, and acceleration limits. It is also
likely to different I/O requirements with regard to Spindle control and such. Additionally a machine
may have different initialization and homing requirements. KMotionCNC has a flexible mechanism
for defining what type of action is to be performed for various M Codes and Custom Buttons.

G Code Actions M100 - M119

This Tool Setup Screen Tab allows the user to define up to 20 custom general purpose M codes
that can be used to change IO bits, or execute User C programs, or execute Windows Programs.
The action to be performed is defined in the same manner as the GCode Actions M3-M9 however
parameters may also be passed from GCode to a KFLOP User C Program. See also MCodes with
Parameters.

http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenM3.htm#G_Code_Actions_-_M3_-_M9
http://dynomotion.com/Help/KMotionCNC/MCodesWithParams.htm
http://dynomotion.com/Help/KMotionCNC/MCodesWithParams.htm

KFLOP User Manual 2016

224 | P a g e

Tool Setup Screen - User Buttons

The Tool Setup Screen allows KMotionCNC to be configured for a particular machine tool. Each
machine tool is likely to have different motion resolution, speeds, and acceleration limits. It is also
likely to different I/O requirements with regard to Spindle control and such. Additionally a machine
may have different initialization and homing requirements. KMotionCNC has a flexible mechanism
for defining what type of action is to be performed for various M Codes and Custom Buttons.

KFLOP User Manual 2016

225 | P a g e

Custom Buttons

Custom Button Actions function in exactly the same manner as the G Code Actions described on
the M3-M9 Tab with the only difference being that they are invoked by the User pushing a button
rather than by a command encountered within a G Code Program. There is an additional Parameter
above the Action Type which is the Title to be placed on the Custom Button. The example above
shows buttons defined with titles "INIT", "HOME", "bit0", and "bit1". Up to 10 buttons may be
defined. Common uses for the Buttons are to invoke programs that initialize and/or home the
machine. Any Button with an empty title field will cause the button to be hidden on the main
KMotionCNC screen. See here for how these defined buttons will appear in the main KMotionCNC
Screen.

A Hot Key can also be assigned so that pushing that specific Key will trigger the Action as if the
button was clicked with the mouse. The Screen must have focus for the Hot Key to work. See
below for a list of numeric Virtual Key Codes:

Key Codes

Value Description

1 Left mouse button

2 Right mouse button

3 CANCEL key

4 Middle mouse button

8 BACKSPACE key

9 TAB key

12 CLEAR key

13 ENTER key

16 SHIFT key

17 CTRL key

18 MENU key

19 PAUSE key

20 CAPS LOCK key

27 ESC key

32 SPACEBAR key

33 PAGE UP key

http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenM3.htm#G_Code_Actions_-_M3_-_M9
http://www.dynomotion.com/Help/KMotionCNC/KMotionCNC.htm#Custom_Buttons

KFLOP User Manual 2016

226 | P a g e

34 PAGE DOWN key

35 END key

36 HOME key

37 LEFT ARROW key

38 UP ARROW key

39 RIGHT ARROW key

40 DOWN ARROW key

41 SELECT key

42 PRINT SCREEN key

43 EXECUTE key

44 SNAPSHOT key

45 INS key

46 DEL key

47 HELP key

144 NUM LOCK key

KeyA Through KeyZ are the same as their ASCII equivalents: 'A' Through 'Z'

Value Description

65 A key

66 B key

67 C key

68 D key

69 E key

70 F key

71 G key

72 H key

73 I key

74 J key

75 K key

76 L key

77 M key

78 N key

79 O key

80 P key

81 Q key

82 R key

83 S key

KFLOP User Manual 2016

227 | P a g e

84 T key

85 U key

86 V key

87 W key

88 X key

89 Y key

90 Z key

Key0 Through Key9 are the same as their ASCII equivalents: '0' Through '9

Value Description

48 0 key

49 1 key

50 2 key

51 3 key

52 4 key

53 5 key

54 6 key

55 7 key

56 8 key

57 9 key

Keys on the Numeric Keypad

Value Description

96 0 key

97 1 key

98 2 key

99 3 key

100 4 key

101 5 key

102 6 key

103 7 key

104 8 key

105 9 key

106 MULTIPLICATION SIGN (*) key

KFLOP User Manual 2016

228 | P a g e

107 PLUS SIGN (+) key

108 ENTER (keypad) key

109 MINUS SIGN (-) key

110 DECIMAL POINT(.) key

111 DIVISION SIGN (/) key

Function Keys

Value Description

112 F1 key

113 F2 key

114 F3 key

115 F4 key

116 F5 key

117 F6 key

118 F7 key

119 F8 key

120 F9 key

121 F10 key

122 F11 key

123 F12 key

124 F13 key

125 F14 key

126 F15 key

127 F16 key

KFLOP User Manual 2016

229 | P a g e

Tool Setup Screen - Files & Face

The Tool Setup Screen allows KMotionCNC to be configured for a particular machine tool. Each
machine tool is likely to have different motion resolution, speeds, and acceleration limits. It is also
likely to different I/O requirements with regard to Spindle control and such. Additionally a machine
may have different initialization and homing requirements. KMotionCNC has a flexible mechanism
for defining what type of action is to be performed for various M Codes and Custom Buttons.

Tool Table File

The Tool Table File specifies the disk text file which contains the table of tool definitions. In some
cases the G Code Interpreter needs to know the length and diameter of the selected tool for tool
path compensation. This file is used to define up to 99 tools. See also Selecting Tools.

See below for an example Tool Table

POC FMS LEN DIAM COMMENT
1 1 0.0 0.0 first tool

http://www.dynomotion.com/Help/KMotionCNC/KMotionCNC.htm#Tool

KFLOP User Manual 2016

230 | P a g e

2 2 0.0 0.0
3 3 1.0 0.5
4 4 2.0 1.0
32 32 0.0 0.0 last tool

Setup File

The Setup File specifies the disk text file which contains the setup table for the G Code Interpreter.
In some machine tools the Interpreter may require a special initialization state. Below is the default
Setup file. Modifications to the setup file should not normally be required.

Attribute Value Other Possible Values

axis_offset_x 0.0 any real number
axis_offset_y 0.0 any real number
axis_offset_z 0.0 any real number
block_delete ON OFF
current_x 0.0 any real number
current_y 0.0 any real number
current_z 0.0 any real number
cutter_radius_comp OFF LEFT, RIGHT
cycle_r 0.0 any real number
cycle_z 0.0 any real number not less than cycle_r
distance_mode ABSOLUTE INCREMENTAL
feed_mode PER_MINUTE INVERSE_TIME
feed_rate 5.0 any positive real number
flood OFF ON
length_units MILLIMETERS INCHES
mist OFF ON
motion_mode 80 0,1,2,3,81,82,83,84,85,86,97,88,89
plane XY YZ, ZX
slot_for_length_offset 1 any unsigned integer less than 69
slot_for_radius_comp 1 any unsigned integer less than 69
slot_in_use 1 any unsigned integer less than 69
slot_selected 1 any unsigned integer less than 69
speed_feed_mode INDEPENDENT SYNCHED
spindle_speed 1000.0 any non-negative real number
spindle_turning STOPPED CLOCKWISE, CCLOCKWISE
tool_length_offset 0.0 any non-negative real number
traverse_rate 199.0 any positive real number

KFLOP User Manual 2016

231 | P a g e

Geo File

Geometric correction file. Allows correcting errors in the the x,y,z positions. The callibration
procedure involves moving the tool tip to an xy array of positions. For example, a precision grid
might be printed on a glass or Mylar plate. By Jogging the tool tip to each row and column grid point
and recording the machine's x,y,z position, a table of machine coordinates that correspond to
perfect coordinates may be obtained. The "measure" button on the main KMotionCNC Screen may
be used to log these positions. If such a table is specified here, the system will correct machine
coordinates by bilinear xy interpolation of this table. Z is corrected for flatness at the plane of z=0
only.

The table format is shown below.

The first line specifies the number of rows and columns in the table.

The second line specifies the delta x and delta y between gridpoints.

The third line defines any Table x,y offset. With an offset of 0,0 grid point row=0,col=0 will
correspond to x=0, y=0. Specifying an offset will shift the table so that row=0, col=0 will correspond
to the offset position. For example if the machine coordinates are such that the origin is in the
middle of the range of travel, then a negative offset would be specified.

The remaining lines are row, column, x, y, z table entries.

For more information see Geo Correction Table.

5,5
1,1
0,0,-1.767822,-2.129132,-0.331770
0,1,-0.878572,-2.068192,-0.262691
0,2,0.036983,-1.979272,-0.234576
0,3,0.930314,-1.909252,-0.237177
0,4,1.836404,-1.805593,-0.236061
1,0,-1.774018,-1.155364,-0.219091
1,1,-0.882401,-1.073801,-0.179651
1,2,0.021794,-0.987806,-0.141523
1,3,0.918408,-0.885504,-0.130446
1,4,1.792961,-0.811495,-0.124016
2,0,-1.771149,-0.166872,-0.121132
2,1,-0.883159,-0.075746,-0.074570
2,2,0.007254,0.005231,-0.051105
2,3,0.889548,0.097292,-0.035076
2,4,1.762710,0.190093,-0.016807
3,0,-1.761705,0.784817,-0.086695

http://www.dynomotion.com/Help/KMotionCNC/GeoCorrection.htm

KFLOP User Manual 2016

232 | P a g e

3,1,-0.885633,0.869580,-0.025417
3,2,0.001747,1.008045,0.017727
3,3,0.880585,1.108997,0.059038
3,4,1.742520,1.204385,0.058162
4,0,-1.729192,1.783193,0.021364
4,1,-0.871298,1.868678,0.054451
4,2,0.005017,1.979718,0.104414
4,3,0.878944,2.104289,0.141666
4,4,1.714383,2.182679,0.144980

Vars File

The Vars File is used to save all the GCode Variables which contain Fixture Offsets as well as other

values. When Variables are saved to disk the file must already exist which lists which variables are

to be saved. The file is read and all the variables present in the file will be replaced with their

current values. Variables 5221-5226 contain the XYZABC coordinates of the first fixture

offset. Skip 20 for each successive fixture.

Main Dialog Face

The Main Dialog Face selection selects the look of the main operation screen for KMotionCNC.
Currently there are several available selections. The main difference is the number of axes, DROs
and jog buttons. It is also possible to alter the dialogs by using a WindowsTM Resource Editor. Either
Microsoft Visual Studio or a 3rd party freeware such as: http://www.angusj.com/resourcehacker.

http://www.dynomotion.com/Help/KMotionCNC/EditFixtureOffsets.htm
http://www.angusj.com/resourcehacker/
http://www.angusj.com/resourcehacker/

KFLOP User Manual 2016

233 | P a g e

Tool Setup Screen - Trajectory Planner

The Tool Setup Screen allows KMotionCNC to be configured for a particular machine tool. Each
machine tool is likely to have different motion resolution, speeds, and acceleration limits. It is also
likely to different I/O requirements with regard to Spindle control and such. Additionally a machine
may have different initialization and homing requirements. KMotionCNC has a flexible mechanism
for defining what type of action is to be performed for various M Codes and Custom Buttons.

KFLOP User Manual 2016

234 | P a g e

Trajectory Planner

KMotionCNC contains a powerful Trajectory Planner. The Trajectory Planner utilizes a "break
angle" concept to decide when a stop must be made. Vectors that are in the same direction within
the "break angle" are traversed without stopping. When a "sharp" angle is detected a complete stop
will be made before beginning on the next vector. The Break Angle Parameter allows the user to
specify the angle in degrees that will be considered a "sharp" angle. KMotionCNC considers the
change in direction in 3 dimensions (x,y,z ignoring a). The Trajectory Planner is capable of
optimizing the acceleration and deceleration through many short (or long) vectors all of which may
have different acceleration and velocity limitations.

The Trajectory Planner also has a "lookahead" parameter. With KMotionCNC the G Code Program
itself, the G Code Interpreter, and the Trajectory Planner all reside within the PC running Microsoft
Windows™. Since the Microsoft Windows™ is not a real-time OS, a certain amount of motion must
be buffered in the motion controller to handle the cases where the PC program doesn't have a
chance to execute for a while. These time periods are typically very short (a few milliseconds), but
in some extreme cases may occasionally be as long as one or several seconds. The worst case is
often a factor of the hardware (disk network adapters, etc) and associated drivers that are loaded
into the system. The lookahead parameter is used to determine how much motion, in terms of time,
should be downloaded to the motion controller before actual motion is initiated. Furthermore, after
motion has begun, the lookahead parameter is used to pause the trajectory planner to avoid having
the Trajectory Planner get too far ahead of the actual motion. The disadvantage of having the
Trajectory Planner get too far ahead is that if the User decides to override the feed rate, since the
motion has already been planned and downloaded, the rate will not be changed quickly. A value of
3 seconds is very conservative on most systems. If more responsive feed rate override is desirable,
an experiment with a smaller value might be made.

"Collinear Tolerance" allows GCode blocks that are nearly linear, to be combined into a single linear
segment to allow faster and smoother motion. Often GCode programs generated by 3D CAD
systems contain very small vectors that appear jagged or noisy due to numerical round off errors .
See below for an example of a small GCode fragment from an intended circle. The 0.3 inch
diameter circle was divided into 10,000 sides each only 0.0001 inches in length. Intuitively one
would think this would result in an extremely smooth contour. Ironically, rounding off to 4 decimal
digits introduces "noise" that results in sharp angles and each axis being required to repeatedly stop
and start. Even with quite high acceleration, stopping and starting over short distances results in
extremely low average speed and most likely a rough surface. A combined segment shown below in
blue will result in a faster and smoother motion.

Segments are combined as long as all intermediate waypoints do not deviate from the combined
segment by more than the allowed collinear tolerance. Setting the collinear tolerance to zero will
disallow any segments from being combined.

KFLOP User Manual 2016

235 | P a g e

N70 G90 G54 G0 X6.315 Y4.7132 Z1.

N100 G1 X6.3151 F60.

N110 Y4.7133

N120 X6.3152 Y4.7134

N130 Y4.7135

N140 X6.3153 Y4.7136

N150 Y4.7137

N160 X6.3154 Y4.7138

N170 X6.3155 Y4.7139

N180 Y4.714

N190 X6.3156 Y4.7141

N200 Y4.7142

N210 X6.3157 Y4.7143

N220 Y4.7144

N230 X6.3158

The "Arcs To Segments" option allows circular arcs that were specified in the original GCode to be
replaced by a number of linear segments. Each arc will be recursively subdivided until any cord
error deviation from the original path is less than the Collinear Tolerance parameter. Sub dividing
the arc (actually a helix) into line segments allows the path motion to be more fully optimized by the
Trajectory Planner. This is because as the motion progresses through the arc the direction
changes. As the direction changes the different axes become involved and also work together in
different ways (diagonal directions make use of more than one axis). This means constraints (max
velocity and acceleration) vary throughout the arc. With individual line segments the Trajectory
planner is able to use optimal acceleration and velocity throughout the arc. When Arcs To

KFLOP User Manual 2016

236 | P a g e

Segments is not selected the entire arc may be treated as a single entity and will use the most
limited velocity and acceleration constraints throughout the arc for the entire arc. If the feed rate is
slow and curvature based accelerations are small relative to the axis limits then there will be little
performance increase in using segments.

When the "Arcs To Segments" Option is selected the Collinear Tolerance must be larger than
zero. Care should be used in selecting a Collinear Tolerance so that an excessive number of
segments is not generated. The number of segments increases as the square root of the inverse of
the Collinear Tolerance (cutting the tolerance in half increase the number of segments by 40%).

 For a description of the Corner Rounding feature and Corner Tolerance and Facet Angle see here.

Jog Speeds

Defines the Jog Speeds for both the Jog Buttons and any attached Gamepad controller. These
speed are the maximum Jog speed which is the double arrow jog button or the GamePad joystick
fully depressed. See Also Jog Buttons. The Reverse R/Z may be selected if the GamePad Z motion
is reversed on a particular GamePad device.

Step Increments

Defines the step size distances for the Step Buttons that are displayed on the main KMotionCNC
Screen. Setting a step size to zero will hide the size selection. See Also Jog Buttons.

Lathe Options

Defines options relating to Lathe systems.

http://www.dynomotion.com/Help/KMotionCNC/TrajectoryPlanner.htm
http://www.dynomotion.com/Help/KMotionCNC/KMotionCNC.htm#Jog_Buttons
http://www.dynomotion.com/Help/KMotionCNC/KMotionCNC.htm#Jog_Buttons

KFLOP User Manual 2016

237 | P a g e

Selecting the Lathe option orients the Jog Buttons and default GViewer orientations to have +Z
horizontal to the right and with X vertical as most Lathe systems are configured. The "X Positive
Front" rotates the axes system (and X Jog Keys) so that the tool moves toward the front of the
system as X increases. This is more suitable for cutting tools mounted on the front side of the
spindle. Otherwise the tool moves toward the back as X increases. This is more suitable for read
mounted tools.

X Positive Rear

X Positive Front

When Diameter Mode is selected the Gcode X Units, X Offset Units, and X DRO Units are all in
terms of diameter. In this mode actual tool cutter motion is 1/2 the specified value so the the total
diameter of the cut part is the specified value. When Diameter Mode is not selected, Radius mode
will be used, the tool cutter motion will be the specified value, and the cut part will have a radius of
the specified value in the GCode.

KFLOP User Manual 2016

238 | P a g e

Feed Rate Override

The Hardware Range value allows control over what part of the Feed Rate Override (FRO) Range
is handled by Hardware, and what part is handled by Software (Trajectory Planner).

Hardware FRO has the advantage of having instant response, however it has a disadvantage of
having accelerations distorted by time warping. Accelerations will be distorted by the square of the
FRO setting. For example a FRO of 2.0 will result in accelerations 4X higher than
planned. Hardware FRO can be thought of like playing a movie back in fast or slow
motion. Another analogy might be a car that plans a trajectory accelerating from 0 to 60MPH in 10
seconds. Played at double time (FRO=2.0) would result in acceleration from 0 to 120MPH in 5
seconds! Similarly feed rates through tight curves will be proportionally increased by the FRO
possibly resulting in excessive acceleration. Velocities are also increased proportionally by the
Hardware FRO. This is obviously the normal intention, however speeds at or near the maximum
possible for the system may now exceed the capabilities of the system. This also applies for Rapid
(G0) motions. Any Hardware FRO value higher than 1.0 must have maximum system settings set
in a manner that accelerations and velocities have sufficient margins to allow this increased
acceleration and velocity.

Hardware FRO values less than 1.0 will be distorted in the opposite manner. Accelerations will be
unnecessarily slow. In the previous car analogy played at slow motion (FRO=0.5) the car would
accelerate from 0 to 30MPH in 20 seconds. Motions through tight curves will be proportionally
slowed down regardless if a higher speed might be possible and closer to the desired feed
rate. Hardware FRO values less than 1.0 will never cause a maximum acceleration or velocity limit
to be exceeded.

Software FRO always provides the optimal motion without ever exceeding any system
constraint. Maximum Accelerations and Velocities on all axes will always be
honored. Accelerations to feed rate will always be optimized. Speeds through curves will always
be optimal. However such optimized Trajectory Planning is complex and requires look ahead and
results in some delayed response to changes. Reducing lookahead can minimize this delay.

The FRO Hardware Range Parameter sets the boundary FRO value where values below the setting
will be handled by Hardware, and values above the setting will be handled by Software. Here are
some examples:

Hardware Range = 0.0 will cause all FRO values to be handled by Software.

Hardware Range = 100.0 (a huge value) will result in all FRO values being handled by Hardware.

Hardware Range = 1.0 will cause all values less than 1.0 to be handled by Hardware and values
greater than 1.0 to be handled in Software. This is the largest value that will never cause the set
values of Max Acceleration or Max Velocity set in the Trajectory Planner to be exceeded.

http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenTP.htm#lookahead

KFLOP User Manual 2016

239 | P a g e

Hardware range = 1.2 will cause all values less than 1.2 to be handled by Hardware and values
greater than 1.2 to be handled in Software. This setting is useful if it is required to have minor
increases (+20%) and all decreases have an instant effect. However this requires that the set
values of Max Acceleration or Max Velocity set in the Trajectory Planner be set by a factor of 1/1.22
= 0.69 of the system capabilities in order to provide margin to allow for the Hardware FRO.

Hardware Range = 0.5 will cause all values less than 0.5 to be handled by Hardware, and values
greater than 0.5 to be handled in Software. In most cases this will result in a similar result as
Hardware Range = 0.0 (with all changes handled by Software). However in cases for example
where the FRO is suddenly reduced from 1.0 to 0.25 the system will first reduce the FRO to 0.5 in
Software, and then the remainder, another factor of 0.5 in Hardware. The Software effect will be
delayed but the hardware effect will be instant. This provides most all of the benefits of Software
FRO in the normal ranges of (ie 0.9 - 1.1) while also allowing a means of instantly slowing down.

Max Rapid FRO

Limits the Rapid FRO to the specified value. Rapid FRO is always performed in hardware so values
Rapid FRO values greater than 1.0 will exceed the specified Velocity, Acceleration, and Jerk
specified in KFLOP. Use this limit to avoid FRO values that would cause Velocities, Accelerations,
or Jerks that the system would be incapable of performing. This value is commonly set to 1.0 if the
parameters specified in KFLOP are set at the maximum possible. To allow FRO values greater
than 1.0 the system must have sufficient margin to be able to exceed the specified
parameters. Values less than 1.0 are not commonly specified.

Rapids as Feeds

Selects whether Rapids are performed as 3rd-order (Jerk limited) motions or 2nd order Feed
Motions. Most systems will not select this option so that Rapids are performed as faster/smoother
3rd-order Jerk-Limited motions. However KFLOP performs 3rd order Rapids as a single linear
interpolated multi-axis motion at the actuator level. This is fine for normal Cartesian xyz linear
systems however may cause problems for highly non-linear kinematic systems as a straight line in
actuator space is not likely to be a straight line in real CAD space. For example a Delta Platform is
an example of a non-linear system. This may result in a rapid motion path from one point to another
to be along a somewhat unpredictable curved path. In some cases this may result in an
undesirable crash. Geometric Correction is also a form of nonlinearity. However Geometric
correction is usually not sufficiently non-linear to cause problems unless long rapids are performed
passing very close to part surfaces or features. If nonlinearity is an issue for your system, select
this option and Rapids will always be performed along a straight line as they will be subdivided into

http://www.dynomotion.com/Help/KMotionCNC/GeoCorrection.htm

KFLOP User Manual 2016

240 | P a g e

small segments where proper actuator positions are calculated to keep the motion along a straight
line. Regardless of whether this option is selected or not the Velocity and Acceleration will be set by
the KFLOP Axis Parameters not by the current GCode Feed Rate or Trajectory Planner Settings.

Display Encoders

Displays in the DROs the Measured Encoder Position for axes that are configured with an Input
Mode other than None. When Un-checked all DROs display the commanded position.

Zero Using Fixture Offsets

Zero/Set Buttons near DROs allow the User to Set the DRO to Zero or a Specified Value. This is
accomplished by adjusting GCode Offsets. When this option is selected then the currently selected
Fixture Offset will be adjusted. When unchecked the Global G92/G52 Offset will be adjusted.

Tool Length/Offset Immediately

This option causes the KMotionCNC Drop Down Tool Selector to immediately select and apply the
Tool Length (and offsets) Compensation without having to select and turn on the compensation in
GCode with "HxxxxG43".

M6 on Tool Table Changes

This option causes the automatic execution of an TxxxM6 operation after the Tool Table has been
edited to re-select the specified Tool so the selected Tool ID, slot, offsets, image all reflect the
current state of the Tool Table.

KFLOP User Manual 2016

241 | P a g e

Axis Motion Parameters

The Axis Motion Parameters define the scale, maximum feed velocities, and maximum feed
accelerations for each of the six axis.

The first parameter is the axis's scale in counts/inch. For the example value of 100 shown,
KMotionCNC will command the motion controller to move 100 counts for each inch of motion in the
G Code Program. This value is always in counts/inch regardless of the units used in the interpreter.
KMotionCNC will automatically perform any conversions.

The second parameter is the maximum allowed feed rate for the axis in inches/sec. Note that the G
Code Interpreter Feed Rate is defined in inches per minute or (mm per minute) so be aware of the
different time units. These are maximum feed rates for each axis. If a vector tool motion at a
particular feed rate has any component velocity that exceeds the corresponding axis's maximum
velocity, the feed rate for the vector will be reduced so that all axes remain at or below their
maximum allowed velocity.

The third parameter is the maximum allowed acceleration for the axis in inches/sec2. The G Code
Language has no provisions for specifying acceleration rates. Therefore the acceleration (and
deceleration) along a vector used will always be the largest acceleration such that each axis's
acceleration is at or below the specified limit.

The velocity and acceleration limits apply only to linear and circular feed motions (G1, G2, G3).
Rapid motions (G0) use the settings in the motion controller (velocity, acceleration, and Jerk) to
move each axis independently from one point to another (which is likely not to be a straight line). To
change the speed of Rapid motions change the configuration settings in the motion controller.

KFLOP User Manual 2016

242 | P a g e

Axes A,B,C sometimes are angular axes and are programmed to move angles of degrees rather
than linear distances. If so select "Degrees" so that the axis moves in degrees regardless of the
Inch or mm modes in GCode.

The best method for performing coordinated linear and angular combined motion is to use G93
Inverse Time Mode. This mode allows the CAD system to generate GCode that will cause the feed
rate at the tool to always be at the desired feed rate based on the geometry of the
system. However this requires a time (specified by its inverse) for each GCode block to be
computed and included in the data stream. If Inverse TIme GCode data is not available a Radius
for each Angular Axis can be specified. This allows the Trajectory planner to convert angular
motion rates to linear motion rates. This assumes that the tool will remain at a relatively constant
radius from the rotation axis (ie. engraving on a cylinder). Whenever Degrees is specified with a
non-zero radius then the Trajectory Planner will consider the motion for that axis to be at the
equivalent radius and orthogonal to all other combined motions.

As an example for the settings shown above for Axis A the maximum linear Velocity and
Acceleration rates are the same as X, Y, and Z assuming a 10 inch radius about the A Axis of
rotation.

57.295 deg/sec x π/180deg x 10in = 10in/sec

229.183 deg/sec2 x π/180deg x 10in = 40in/sec2

The GCode sequence shown below will perform a G1 Feed a linear distance of 10 inches in both X
and A. Because the X and A axis are assumed to be orthogonal the combined distance will be
assumed to be 14.1 inches total. At a feed rate of 60 ipm = 1 ips, the total Feed Time will be 14.1
sec (plus a small acceleration time).

G20
G0 X0 Y0 Z0 A0
G1 X10 A57.295 F60
M2

KFLOP User Manual 2016

243 | P a g e

Threading/Spindle Settings

Spindle Speed measurement is also supported (Single Point Threading is under development). A

quadrature encoder is required on the spindle. Specify the Sensor Type as 1 to enable the Spindle

measurement. Configure the Axis Channel that is configured to read the encoder (Note this is not

the encoder channel, rather it is the axis that has the encoder channel configured as its

input). Specify the Update time, Tau, and counts/rev. See here for more information.

http://www.dynomotion.com/Help/Cmd.htm#ConfigSpindle

KFLOP User Manual 2016

244 | P a g e

Trajectory Planner Corner Rounding Settings

The KMotionCNC Trajectory planner contains two parameters (Facet Angle and Corner Tolerance)
that can be used to smooth paths generated by line segments in the GCode. Although shown below
as 2D paths this smoothing applies for 3D paths as well. Standard GCode and many CAD systems
do not support arcs in arbitrary 3D space so small line segments are typically used to define the 3D
path. Facet Angles in the original GCode data that are less than the specified Break Angle (which
are considered "small" and will not cause a motion stop) will be re-faceted with smaller line
segments along a curve to have Facet Angles smaller than the specified amount. The new line
segments will be placed along the largest arc that will not deviate more than the specified Corner
Tolerance or consume more than 1/2 of the segment length. If no Corner Rounding is desired the
Corner Tolerance can be set to zero.

Shown below is an example motion path where the bottom right arc is formed by 30 line segments.
Normally a simple arc could be specified but for test purposes it was created with 30 3 degree angle
facets forming the 90 degree turn. The tests below were performed simulating a fairly high
performance system with 30 in/sec2 acceleration in both X and Y. The Gcode used can be
downloaded here.

http://www.dynomotion.com/Help/KMotionCNC/KMotionCNCfiles/TESTCURVEOFTERROR3DEG.NC

KFLOP User Manual 2016

245 | P a g e

Here is the path Overview.

Notice the circled region of the path looks smooth, but when zooming in as shown below the 3-
degree angle facets are just barely visible. This resolution is typically used to provide a reasonably
smooth path without making the file size abnormally large.

KFLOP User Manual 2016

246 | P a g e

KFLOP User Manual 2016

247 | P a g e

In the plot below the Corner Rounding is enabled and the facets are now reduced in size and form
0.5 degree angles that can now no longer be seen.

To see more clearly the improvement the X Axis motion was captured in real-time (180us sample
rate) and plotted. From the position the Velocity and Acceleration were also computed and plotted.

First the original captured motion X axis position, velocity, and acceleration vs. time through the
original 3-degree facets with no corner rounding.

Note that the velocity plot has an odd shape for several reasons. At constant velocity the facet angle
change causes the x velocity to drop while the y velocity increases, but since we are accelerating
through the curve (because a more diagonal direction can make use of the increased (combined)
acceleration of both axes) the velocity ramps up at the max acceleration toward the beginning of
each facet. The programmed feed rate is 400ipm (6.67ips) but the speed is acceleration limited by
the curvature of the path, hence the deceleration to ~ 5.5ips on the left as we enter the curve.

KFLOP User Manual 2016

248 | P a g e

Now using the Trajectory Planner settings shown below. Notice the velocity is much smoother and
the Acceleration is less Jerky.

KFLOP User Manual 2016

249 | P a g e

KFLOP User Manual 2016

250 | P a g e

For still further motion smoothing an additional KFLOP feature can be used. A low pass filter can be
applied to the output of the coordinated motion path.

The Low Pass Filter will be applied to all axes of coordinated motion (up to 8) by setting the KLP
coefficient within KFLOP. Currently a C Program must be used to set this global parameter.

To compute an appropriate coefficient from a time constant Tau in seconds use the formula KLP =
exp(-TIMEBASE/Tau) as shown below

#include "KMotionDef.h"

main()

{

double Tau = 0.001; // seconds for Low Pass Filter Time Constant

KLP = exp(-TIMEBASE/Tau);

printf("Tau=%f KLP=%f\n",Tau,KLP);

}

Note the Velocity and Acceleration plots are even smoother. A low pass time constant Tau = 1
millisecond was used.

KFLOP User Manual 2016

251 | P a g e

The disadvantage associated with low pass filtering of the trajectory is a potential lag in the
commanded positions which may cause small path errors. The plots shown below show that a Low
Pass Filter setting of 1 millisecond will be insignificant for most systems. A nearly worst case 90-
degree angle with max deceleration on the X axis, followed by max acceleration on the Y axis are
shown below.

The first case is captured with no Low Pass Filtering. Note a perfectly square corner. Each tick mark
shows a captured 180us sample point.

The case below is with 1 millisecond of filtering with a path error of ~ 0.01 mil (0.25um)

KFLOP User Manual 2016

252 | P a g e

The case below is with 3 milliseconds of filtering with a path error of ~ 0.1 mil (2.5um)

KFLOP User Manual 2016

253 | P a g e

Because the Low Pass Smoothing introduces a small position lag the very end of the smoothed

path will not be completed when the coordinated path is completed. To complete the path the final

position and velocity of each of the coordinated axes are used to calculate a Cubic Spline to

complete the final small motion. The Cubic Spline allows continuous velocity from the end of the

smoothed path to the target position in a manner where the velocity also reaches zero at the target

position. A Time duration of the Cubic Spline set at 2xTau of the low pass filter provides a relatively

constant deceleration to the Target.

KFLOP User Manual 2016

254 | P a g e

Controlling KMotionCNC from KFLOP

User KFLOP C Programs can request actions to be performed by the KMotionCNC Application
running on the PC by setting various command codes into special persist.UserData variables. The
special UserData variables are being continuously uploaded with the Bulk Status record that
KMotionCNC requests at approximately 10 times per second to update the DROs and so forth. If a
command code is uploaded, KMotionCNC attempts to perform the requested action, then changes
the UserData Command Value to a result code. Zero indicates success and a negative value
indicates an error code (all commands are positive). So the typical process involves:

#1 - KFLOP stores command into a Persist Var to request an action

#2 - The command is uploaded to KMotionCNC with the next status request

#3 - KMotionCNC performs the action

#4 - KMotionCNC clears the Persist Var to indicate completion

#5 - KFLOP detects the command Var has been cleared to know the action was successful and
complete

The Status uploads several Persist Vars which permits additional parameters to be uploaded with
the command to KMotionCNC if required by the action to be performed. If extra parameters or data
is required, then one of the uploaded parameters will specify where that data is located.

The number of UserData variables has now been expanded from 100 to 200 Variables and
Variables 100-107 are the special vars constantly uploaded with bulk status. This is defined in the
PC-DSP.h file as:

#define PC_COMM_PERSIST 100 // First Persist Variable that is uploaded

in status
#define N_PC_COMM_PERSIST 8 // Number of Persist Variables that are

uploaded in status

Currently supported actions include:

 EStop

 Halt
 Execute

 Single Step

 Set FRO

 Inc/dec FRO

 Set X,Y,Z,A,B,C DROs

 Push a User Defined Action Button

 Execute an M Code

 Display a Message Box

 Get/Set GCode #Vars

KFLOP User Manual 2016

255 | P a g e

 Execute a MDI line of GCode

 A new example called KFLOPtoPCCmdExamples.c is included which demonstrates how to invoke
these actions from a KFLOP User C Program. The following helper functions are included in the
example that simplify invoking the actions by setting the proper persist variables. They are:

// Trigger a message box on the PC to be displayed
// defines for MS Windows message box styles and Operator

// response IDs are defined in the KMotionDef.h file
int MsgBox(char *s, int Flags)

// put the MDI string (Manual Data Input - GCode) in the

// gather buffer and tell the App where it is
int MDI(char *s)

// Put a Float as a parameter and pass the command to the App
int DoPCFloat(int cmd, float f)

// Put an integer as a parameter and pass the command to the App

int DoPCInt(int cmd, int i)

// Pass a command to the PC and wait for it to handshake

// that it was received by either clearing the command
// or changing it to a negative error code
int DoPC(int cmd)

The Example code to make use of the helper functions is in the example as:

main()
{
 int Answer;

 double *pD = (double *)persist.UserData;

 DoPC(PC_COMM_ESTOP);
 DoPC(PC_COMM_HALT);

 DoPC(PC_COMM_EXECUTE);
 DoPC(PC_COMM_SINGLE_STEP);
 DoPCFloat(PC_COMM_SET_FRO,0.25f);

 DoPCFloat(PC_COMM_SET_FRO_INC,1.1f);
 DoPCFloat(PC_COMM_SET_X,0.0);
 DoPCFloat(PC_COMM_SET_Y,0.0);
 DoPCFloat(PC_COMM_SET_Z,1.25);

 DoPCInt(PC_COMM_USER_BUTTON,3);
 DoPCInt(PC_COMM_MCODE,3);

 Answer = MsgBox("Hello World",MB_YESNO|MB_ICONEXCLAMATION);
 if (Answer == IDYES)
 printf("Answer is Yes\n");

KFLOP User Manual 2016

256 | P a g e

 else

 printf("Answer is No\n");

 MDI("G0 X1.2 Y2.2 Z3.3");

 // put 3 double values in the persist vars

 pD[10] = 123.456;
 pD[11] = 1000.0;
 pD[12] = 999.9;

 // transfer up to the GCode Vars
 SetVars(100,3,10); // Upload 3 to GCode 100 from persist 10

 MDI("#100 = [#100 + 1]");

 // read them back into different persist Vars

 GetVars(100,3,13); // Download 3 from GCode 100 to persist 13

 printf("%f %f %f\n",pD[13],pD[14],pD[15]);

}

KFLOP User Manual 2016

257 | P a g e

MCodes with Parameters

KMotionCNC allows MCodes 100-119 with parameters when configured to Execute a KFLOP User

C Program. The P Q and R words in the GCode block will be downloaded to KFLOP's

persist.UserData variables before the C program is executed. The parameters will be placed into

consecutive KFLOP variables as 32-bit floating point values starting with the variable specified in

the MCode Configuration. Zero, one, two, or all three parameters may be specified in the GCode

block (line). The order they are placed into the variables will always be in the P Q R order where

any or all of the parameters will be omitted if they are not explicitly specified in the GCode Block. If

no parameters are specified then the MCode number will be stored into the one Var specified.

Example M Code Configuration

Example M Code Usage with all 3 parameters

M110 P1.23 Q4.56 R-1

Example C Code accessing parameters:

#include "KMotionDef.h"

main()
{

 printf("P = %f Q = %f R = %f\n",
 *(float *)&persist.UserData[0],
 *(float *)&persist.UserData[1],
 *(float *)&persist.UserData[2]);

}

Printed Result

P = 1.230000 Q = 4.560000 R = -1.000000

KFLOP User Manual 2016

258 | P a g e

Geo Correction Table

The area of the CAD Space to be corrected is defined by a number of rows and columns and an XY
Grid size. A CAD point falling within a grid uses a bilinear interpolation from the 4 points making up
the grid region to map to actuator space.

There is also a Z coordinate associated with each grid point. The mapping applies this as a Z offset
in order to flatten the XY plane if necessary. If no flattening is required then the z values should all
be specified as zero in the table.

Normally a Geo Correction Table is defined to be large enough to map the entire range of motion of
the system. However, for points outside the range of the Table the closest grid region is
extrapolated to form the result. The largest Table currently allowed is a 4000x4000 array.

When a Geo Correction Table has been loaded Arcs are automatically broken into small line
segments internally where each segment's endpoints are Geocorrected into actuator space. This is
necessary because an Arc in CAD space in unlikely to still be an Arc in Actuator Space. The
Trajectory Planner Collinear Tolerance Setting is used to determine how small of line segments are
used. Line segment lengths will be chosen small enough to not deviate from the true Arc by more
than the Collinear Tolerance. For most systems a value of 0.001 inches should be used.

The smallest possible Geo Table consists of a single rectangle consisting of 4 points (2 rows and 2
columns). In this case the entire infinite CAD Space plane is mapped to the Actuator Space using a
single set of transformation equations.

http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenTP.htm#Trajectory_Planner

KFLOP User Manual 2016

259 | P a g e

The Example below shows how the table can be used to form a simple transformation:

Corresponding Geo File

Simple 2x2 grid on CAD Space Grid Spacing of 1 inch in X and 1 inch in Y.

Then 4 grid points (row,col,X,Y,Z)

See file as <Install>\KMotion\Data\MeasurementsPlusMinus.txt

2,2
1,1
-0.5,-0.5
0,0,-1, 0, 0
0,1, 0,-1, 0
1,0, 0, 1, 0
1,1, 1, 0, 0

KFLOP User Manual 2016

260 | P a g e

Synchronous IO Commands Embedded in Coordinated
Motion

KMotionCNC allows I/O operations to be embedded into the Coordinated Motion Buffer such that
the IO commands are output synchronously (within 90us Servo Sample) with motion. (Buffered IO
operations can also be inserted with Library calls from custom applications).

This example shows two MCodes configured to set bits I/O bits 46 and 47 high and also MCode M6
configured to wait for I/O bit 46 to be low.

A simple GCode Fragment shows the MCodes embedded within a continuous straight motion right
at the point the motion reaches X=1.0.

The Trajectory Planner normally combines very collinear motion blocks together for smoothing and
so forth. But in this case it is careful to not combine segments that cross a buffered I/O boundary.

Executing the GCode we can observe the IO bits 46 and 67 set high as the motion crosses X=1.0

Executing the GCode we can observe the IO bits 46 and 67 set high as the motion crosses X=1.0

KFLOP User Manual 2016

261 | P a g e

The GCode below demonstrates a right-triangle motion path with the I/O commands inserted at a
corner.

With Trajectory Planner Break Angle set to 10 degrees (which is less than 90 degrees) a full stop
will occur at the corners.

KFLOP User Manual 2016

262 | P a g e

In this case the IO switches where the instantaneous stop occurs at a corner.

To demonstrate what happens with corner rounding an exaggerated corner rounding example is

shown below. With a Break Angle greater than 90 degrees a stop will not occur at the corner. Also

a large radius (0.1 inches) and large facet angle (20 degrees) corner rounding is configured.

KFLOP User Manual 2016

263 | P a g e

To observe exactly what happens we use the KFLOP C Program shown below to real-time capture

the XY position when the IO occurs (XY resolution is 10000 counts per inch).

#include "KMotionDef.h"

main()

{

 int New,Last=ReadBit(46);

 for (;;)

 {

 New = ReadBit(46);

 if (New != Last)

 {

 Last=New;

 printf("X=%f Y=%f\n",ch0->Dest/10000.0,ch1-

>Dest/10000.0); // send message to console

 }

 }

}

The captured position is printed as:

X=0.929315 Y=0.070748

KFLOP User Manual 2016

264 | P a g e

In addition to embedding outputs into the motion stream, waits for inputs can be embedded. This is

inserted as a buffered WaitBitBuf command. When executed if the specified bit is false the motion

will stall at that point until the input becomes true. There is a similar command WaitNotBitBuf that

will stall until the input becomes false. MCodes can be configure to insert these

commands, Although Wait commands can be inserted anywhere in a motion path it normally is only

useful to place them at locations where the motion stops. Such as the very beginning of a path or at

a corner where motion comes to a stop. Otherwise an instantaneous stop will occur without any

http://www.dynomotion.com/help/cmd.htm#WaitBitBuf
http://www.dynomotion.com/help/cmd.htm#WaitNotBitBuf

KFLOP User Manual 2016

265 | P a g e

acceleration. Wait commands are useful when motion must proceed instantly on command. This is

possible because the motion has already been Interpreted, planned, downloaded, and commanded

to execute ahead of time. See the example GCode below where a wait has been inserted at a

corner.

KFLOP User Manual 2016

266 | P a g e

The plot below shows where the wait will stall execution if the specified bit is false.

KFLOP User Manual 2016

267 | P a g e

KMotionCNC Spindle Control

Overview
Basic Configuration
User Program Configuration
CSS - Constant Surface Speed
Step-by-step Recap
Video
Configuring an Axis to Control a DAC open Loop

Overview

KMotionCNC allows the User to configure how the Spindle is to be be controlled. Four basic
actions that need to be defined are:

M3 - Turns on the Spindle in a CW direction

M4 - Turns on the Spindle in a CCW direction

M5 - Turns off the Spindle

Snnnn - Sets the desired RPM or Constant Surface Speed in feet/min or meters/min

To configure what action is to take place for each of the four functions the Tool Setup must be
configured to either do the operations directly, or by invoking a KFLOP User C Program.

For the most basic cases where only one or two control IO bits are required for On/Off/Direction the
IO operations can be configured directly. If Speed can be controlled by simple open loop
scaling/limiting of a DAC output then speed control can also be configured directly.

For more complex cases and to allow control of virtually any type of Spindle, through any type of
interface, KMotionCNC can be configured to invoke User programs to perform the four tasks listed
above. Spindles might need to be controlled in a variety of different ways: Open Loop, Closed
Loop, DACs, PWMs, Step/Dir, ModBus, Rs232, etc... Although this requires a small program to be
written, it provides maximal flexibility and full control to the system designer. Usually with only a
few lines of code the desired task may be performed. Common examples are provided.

For G96/G97 - CSS (Constant Surface Speed) an additional program is required to run continuously
in KFLOP which changes spindle speed continuously as a function of X position (radius). See the
CSSJog.c example.

If a quadrature encoder is installed on the spindle it may be used for Spindle Speed Measurement
and Display. See the Threading Configuration described here.

http://dynomotion.com/Help/KMotionCNC/SpindleControl.htm#Overview
http://dynomotion.com/Help/KMotionCNC/SpindleControl.htm#Basic_Configuration
http://dynomotion.com/Help/KMotionCNC/SpindleControl.htm#User_Program_Configuration
http://dynomotion.com/Help/KMotionCNC/SpindleControl.htm#CSS_-_Constant_Surface_Speed
http://dynomotion.com/Help/KMotionCNC/SpindleControl.htm#Step-by-step_Recap
http://dynomotion.com/Help/KMotionCNC/SpindleControl.htm#Video
http://dynomotion.com/Help/KMotionCNC/SpindleControl.htm#Configuring_an_Axis_to_Control_a_DAC_open_Loop
http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenTP.htm#Threading/Spindle_Settings

KFLOP User Manual 2016

268 | P a g e

Basic Configuration

For basic configurations where the spindle CW/CCW/OFF can be controlled with one or two IO bits
(normally Kanalog Relay Driver or Opto Outputs) and with speed control from a Kanalog DAC then
no C programming is required. An example configuration is shown below. Note the S action is
mapped to Kanalog DAC #7 with a negative scale of -2.047. Kanalog DAC outputs are inverting
such that negative DAC counts result in a positive voltage. The assumption in this case is that an
S value of 1000RPM would correspond to -2047 DAC counts or +10V. And the allowed range is
from -2047 to 0 counts (0V to +10V).

An additional advantage to using I/O bits rather than C Programs is that they I/O commands will be
embedded within the motion stream and will occur synchronously with the motion and without any
pause in the motion. This is especially useful for faster systems with Lasers/Engravers/Extruders
instead of a traditional Spindle. For more information on buffered IO commands see here.

User Program Configuration

For more advanced functionality User C Programs may be assigned for each of the spindle
actions. For systems that have a spindle that can be controlled with an axis channel the C
Programs listed below can be used directly with little or no modification. Note if your Spindle speed
is controlled by a DAC an Axis channel can be configured to output open loop to a DAC, see here
for how. This assumes that axis channel has already been configured much like the other axes in
the system and can be moved using Axis Jog Commands. Spindles such as this are types that can
be driven like a servo with feedback, or as an open loop Step/Dir drive. The only requirement is that
a KFLOP axis channel can be used for control. This also allows acceleration (and Jerk) to be
controlled by the axis channel for smooth speed changes.

The example configuration below shows the four spindle tasks assigned to four C programs. Each
of the programs run temporarily to perform their function and should never execute concurrently so
each can use the same Thread. See here for more information on Threads. M3, M4, and M5 do
not pass any parameter so the VAR should be assigned to ay unused Variable such as #1. For S

http://www.dynomotion.com/Help/KMotionCNC/SynchronousIOCommands.htm
http://www.dynomotion.com/Help/KMotionCNC/SpindleControl.htm#Configuring_an_Axis_to_Control_a_DAC_open_Loop
http://www.dynomotion.com/Help/Multitasking.htm

KFLOP User Manual 2016

269 | P a g e

the speed value is passed in the VAR parameter. If G96/G97 CSS is to be used then the same
VAR should be used as the G96 speed is passed. This VAR number is defined in PC-DSP.h as

#define PC_COMM_CSS_S 113 // S speed setting in inches/sec

In most cases the four C programs can be used without any modification. The programs all include
a common file called MySpindleDefs.h that contain settings that are likely to require customization
for any particular system. The file and parameters are defined and described below. Each of the
four C programs includes this file with an include statement of: #include "MySpindleDefs.h". This
should be placed immediately after the #include "KMotionDef.h" (which includes and defines all the
standard KFLOP definitions).

Some Spindle controls/interfaces can accept a positive and negative command to drive in CW and
CCW directions. Others require inputs (relays) to switch the directions and the speed is always set
as a positive command. If your system is capable of accepting positive and negative commands
then define

USE_POS_NEG_VOLTAGE as 1 otherwise define it as 0.

MySpindleDefs.h

#define SPINDLEAXIS 6 // Axis Channel to Jog to rotate Spindle

#define FACTOR (1000/60.0) // to convert RPM to counts/sec (counts/rev / 60.0sec)

#define SPINDLECW_BIT 154 // bit to activate to cause CW rotation

#define SPINDLECCW_BIT 155 // bit to activate to cause CCW rotation

#define SPEEDVAR 99 // global persistant variable to store latest speed

#define STATEVAR 98 // global persistant variable to store latest state (-
1=CCW,0=off,1=CW)

#define KMVAR PC_COMM_CSS_S // variable KMotionCNC will pass speed parameter (113)

#define USE_POS_NEG_VOLTAGE 0 // 0 = output Magnitude, 1 = output positive and negative
speed

KFLOP User Manual 2016

270 | P a g e

These C Programs (located in the <Install Directory>\C Programs\SpindleUsingJogs\CSS directory)
are written in a manner to handle a common issue with Spindles which is that a Speed change while
the Spindle is commanded off should not be immediately applied. The four programs use two
global variables to maintain the latest state and speed. This allows a speed change (when off) to be
delayed until the spindle is turned on, but also be applied immediately if already on. In the example
above VARs 99 and 98 are used for this purpose.

CSS – Constant Surface Speed

Constant Surface Speed allows a lathe cutting tool to maintain a constant linear rate regardless of
the current radius (or diameter) as the spindle RPM is continuously adjusted as a function of the
radius.

Here is a simple GCode Program that uses G96 CSS mode

G90 G21 (Absolute mm)
G00 X50.8 Y0 Z50.8 (Rapid to starting position)
G96 M3 D2500 S159.6 (CSS should be 1000RPM at R=25.4mm)
G1 X2.54 Z25.4 F350 (Change X - radius)
G1 X50.8 Z0
G1 X2.54 F5000 (Change X - radius faster)
G1 X50.8 Z0
G1 X2.54 (Change X - radius faster)
G1 X50.8 Z0
M05 (Spindle off)
G0 Z50.8
G97 M3 S500 (Run at normal RPM Mode)
G4 P3
M2

G96/G97 CSS requires some additional C Program functionality to be running within KFLOP. When
KMotionCNC decodes a G96 command to enter CSS mode it does so by setting a number of VAR
parameters within KFLOP. A program continuously running within KFLOP will detect the CSS mode
and set the Spindle RPM as a function of the X axis position (radius) and requested surface
speed. The five variables set by KMotionCNC to control CSS are listed in the shared header file
PC-DSP.h as and define which persist variables the data will be placed:

// Persist Variable used with CSS Constant Surface speed for Spindle

// These parameters will be set when GCode switches to G97 CSS mode

// A User program in KFLOP must be running to monitor the mode an x position

// and alter the spindle RPM appropriately.

#define PC_COMM_CSS_MODE 110 // Mode 1=Normal RPM mode. 2=CSS

#define PC_COMM_CSS_X_OFFSET 111 // X axis counts for Radius zero

#define PC_COMM_CSS_X_FACTOR 112 // X axis factor to convert counts to inches

#define PC_COMM_CSS_S 113 // S speed setting in inches/sec

#define PC_COMM_CSS_MAX_RPM 114 // Limit max RPM to this value as Radius approaches
zero

KFLOP User Manual 2016

271 | P a g e

MODE: defines whether CSS is active or not. G96 sets all CSS parameters and then switches the
mode to 2. G97 (normal fixed RPM Mode) sets the Mode to 1. On Power up the Mode will be
0. X_OFFSET allows KFLOP to relate a position in counts to a radius from the spindle axis. It
consists of all GCode Offsets converted to X axis counts. X_FACTOR is the inverse of the X axis
resolution which allows KFLOP to do a simple multiplication to convert X axis counts to inches. S:
is the desired surface speed in inches/sec (converted from GCode units of feet/min or
meters/min). MAX_RPM: specifies the maximum allowed RPM. As the radius approaches zero the
required RPM to maintain a specified surface speed will approach infinity. Any computed RPM
beyond this value will be limited to this value. The max RPM may be specified on the line of GCode
with the D word. If no D word is specified on the same line as the G96 then the limit will be sent as
1e9 RPM.

In most cases the supplied function ServiceCSS() shown below can be used. See C Program
comments below on how to include this file into your Initialization C file and add a call to it in a
continuous loop. If you already have a continuous loop in your Initialization C File then add a call
ServiceCSS() within it. If there is not already an loop add one as shown in the comments below.

// Handle CSS (Constant Surface Speed) messages from KMotionCNC)

//

// This code assumes you have an Axis Channel Configured to control

// Spindle speed and Jog Calls can be made to control speed

//

// Include this function into your main Init Thead code and call it

// continuously from a forever loop similar to that shown here

//#include "KMotionDef.h"

//#include "MySpindleDefs.h"

//#include "CSSJog.c"

//main()

//{

// for (;;)

// {

// WaitNextTimeSlice();

// ServiceCSS();

// }

//}

int *css_mode = &persist.UserData[PC_COMM_CSS_MODE]; // Mode

1=Normal RPM mode. 2=CSS

float *css_xoff = &persist.UserData[PC_COMM_CSS_X_OFFSET]; // X axis

counts for Radius zero

float *css_xfactor = &persist.UserData[PC_COMM_CSS_X_FACTOR]; // X axis factor

to convert counts to inches

float *css_s = &persist.UserData[PC_COMM_CSS_S]; // S

speed setting in inches/sec

float *css_max_rpm = &persist.UserData[PC_COMM_CSS_MAX_RPM]; // Limit max RPM

to this value as Radius approaches zero

double css_T=0; // update only every so often

#define CSS_UPDATE_DT 0.05

KFLOP User Manual 2016

272 | P a g e

void ServiceCSS(void)

{

 float rpm;

 double T=Time_sec();

 if (*css_mode == 2 && T > css_T) // check if we are in CSS mode and it is

time to update

 {

 css_T=T+CSS_UPDATE_DT; // determine next time to update

 // convert axis position to distance from center in inches

 float radius = fast_fabs((chan[CS0_axis_x].Dest - *css_xoff) *

*css_xfactor);

 if (radius > 0.0f)

 rpm = *css_s / (radius * (TWO_PI_F/60.0f));

 else

 rpm = *css_max_rpm;

 if (rpm > *css_max_rpm) rpm = *css_max_rpm;

 if (persist.UserData[STATEVAR]!=0) // if spindle is already on, ramp to

new speed

 {

 if (USE_POS_NEG_VOLTAGE)

 Jog(SPINDLEAXIS,rpm * FACTOR * persist.UserData[STATEVAR]);

 else

 Jog(SPINDLEAXIS,rpm * FACTOR);

 }

// printf("xoff=%f radius= %f xfactor=%f s=%f(ips) maxrpm=%f

rpm=%f\n",*css_xoff,radius,*css_xfactor,*css_s,*css_max_rpm,rpm);

 }

}

Step-by-step Recap

This sequence is applicable for Spindles that can be driven with a KFLOP Axis Channel:

#1 - Electrically Interface your spindle

#2 - Using KMotion.exe configure your Spindle Axis Channel and test that KMotion Console Screen
Jog commands can successfully control it.

#3 - Modify MySpindleDefs.h with settings that apply for your system

#4 - Configure KMotionCNC | Tool Setup | M3 - M9 | M3, M4, M5, and S

#5 - If Spindle encoder feedback is available configure KMotionCNC | Tool Setup | Trajectory
Planner | Threading

KFLOP User Manual 2016

273 | P a g e

#6 - if CSS is desired include and add ServiceCSS() to a continuous loop in your Initialization C File

Video

Simple demo Video of final GCode running CSS GCode.

User Video using CSS.

Configuring an Axis to Control a DAC open Loop

For Spindles that are controlled open loop with a 0-10V signal it is possible to configure an Axis
Channel to output current Speed directly to a DAC. There a several advantages to configuring in
this manner. First, the Spindle can be controlled using Jog Speed Commands in exactly the same
manner as a closed loop servo (or any other) type of Axis Channel. And second the Axis Motion
Profile Parameters (Acceleration and Jerk) can be used to ramp the speed up and down.

The configuration is the same as a DAC Servo with no Feedback (PID all zero) and with Velocity
Feed Forward. The Servo diagram shows how the Motion Profile can be routed directly o the output
using the Velocity Feedforward path:

The Screens below show such a configuration. This configuration can be loaded from
AxisAsDAC7.mot

http://youtu.be/f7Ljo4LHids
http://youtu.be/nWrntLmdJqY

KFLOP User Manual 2016

274 | P a g e

No Input, DAC Output, Negative Gain, Infinite Following error:

KFLOP User Manual 2016

275 | P a g e

Filters all cleared to have Flat DC Gain=1

PID Zero, Max Output = full DAC Range of 2047 counts, Max Error Infinity, Feed Forward 2047 so
that a velocity of 1 count/sec will generate full dac output.

Acceleration = 1 count/s2 so that full speed will ramp up in 1 second, Jerk=5 counts/s3 (Acceleration
is "smoothed" over 1/5th second). This demonstration Move profile moves at 0.5 counts/sec which
results in half of the full DAC output range (1023 counts or 5V analog). Note the output (green plot)
follows the Commanded Velocity (blue) in perfect proportion. Any Velocity Range could be used
because this is only a theoretical velocity profile and can be scaled to any proportion by the Velocity
FeedForward. 1.0 counts/s is used to keep the math simple and to allow Jogging continuously for
years without exceeding the Max error or Max Following Error limits.

KFLOP User Manual 2016

276 | P a g e

You may also test your Spindle Axis using Console Screen Jog commands. For example
Jog7=0.25 should drive the spindle at 25% full speed.

If your Spindle can accept a +/-10V signal to drive both directions then Jog7 = -0.25 should drive in
the negative direction.

The standard SpindleUsingJogs examples can now be used for an open loop DAC controlled
Spindle.

To determine the proper FACTOR in the MySpindleDefs.h file you will need to know what RPM your
Spindle runs at when the full 10V analog signal is applied. This will correspond to the RPM where a
full Jog Speed of 1.0 will be required. So for example if your RPM reading at 10V is 2500 RPM then
configure:

#define FACTOR (1.0/2500.0) // to convert RPM to counts/sec

KFLOP User Manual 2016

277 | P a g e

KMotionCNC Fiducial Alignment

Fiducial Alignment using the external example C# program <Install>\PC VCS

Example\MeasureFiducials

See Video: https://youtu.be/a_p38zktIZI

Measure Fiducials creates and overwrites the Geometric Correction file named:

<Install Directory>\KMotion\Data\FiducialsMap.txt

This should be configured for KMotionCNC to use in the KMotionCNC | Tool Setup | Tool Setup
Files configuration page as shown here:

https://youtu.be/a_p38zktIZI
http://www.dynomotion.com/Help/KMotionCNC/GeoCorrection.htm
http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenFiles.htm
http://www.dynomotion.com/Help/KMotionCNC/ToolSetupScreenFiles.htm

KFLOP User Manual 2016

278 | P a g e

The created Geometric Correction File of 2x2 grid points in the form shown below. The table maps
the corrected locations of a simple 1x1 inch square centered on the origin. Note that because the
the Geo Correction Transformation extends outside the Grid using the closest Grid's Transformation
the size and location of the square is not important.

2,2

1,1

-0.5,-0.5

0,0,-0.411272,-0.508541,0

0,1,0.598128,-0.507930,0

1,0,-0.411883,0.500859,0

1,1,0.597517,0.501470,0

The Measure Fiducials App loads Settings from a file named :

<Install>\\PC VCS Examples\\MeasureFiducials\\MeasureFiducialSettings.txt

Which has this fixed format (avoid extra spaces or tabs). JogSpeed controls the Jog button speeds
in counts/inch for both x and y. Resolution should be set to the same value as in KMotionCNC in
counts/inch. If your system has more than one Video Capture Device you can control which is
selected with the VideoDevice parameter. Zero would be the first detected. MouseMag adjusts the
scale factor between Mouse movement and Axes movement.

JogSpeed 600

Resolution 10000 10000

VideoDevice 0

MouseMag 0.25

KFLOP User Manual 2016

279 | P a g e

KMotionCNC accepts a Window Event to Re-load the current Geometric Correction File. The C#
Measure Fiducials Example finds any open KMotionCNC Window with:

[DllImport("User32.dll", SetLastError = true)]

public static extern IntPtr FindWindow(String lpClassName, String

lpWindowName);

IntPtr KMotionCNCWindow = FindWindow("KMotionCNC", null);

and sends the Window Event to KMotionCNC with:

[return: MarshalAs(UnmanagedType.Bool)]

[DllImport("user32.dll", SetLastError = true)]

public static extern bool PostMessage(IntPtr hWnd, uint Msg, int wParam,

int lParam);

uint WM_COMMAND = 0x0111;

int ID_ReloadGeoCorrection = 33016;

PostMessage(KMotionCNCWindow, WM_COMMAND, ID_ReloadGeoCorrection, 0);

KFLOP User Manual 2016

280 | P a g e

Mach3 Plugin

KMotion/KFlop Mach3

Mach3 is a popular CNC program available for purchase through ArtSoftControls.

Traditionally Mach3 has relied on little hardware support and performed low level motion and even
stepper motor step pulses directly by the PC. The pulses were output using the PC's parallel port.
This required a special Microsoft Windows Kernel driver with a high interrupt rate and was limited to
50~100K steps per second.

Mach3 has the capability for adding "plugins" that allow additional functionality and hardware
support. DynoMotion has developed a plugin that allows Mach3 to work with a KMotion or KFLOP
Motion Controller. The offloads most of the real-time requirements from the PC, allows USB
connectivity, much higher step rates, and allows easily adding other motor types including brushless
servos.

This is an overview of the overall setup process of getting Mach3 and KMotion to play together.

1. Install Mach3
2. Install KMotion
3. Within KMotion configure/tune your motors
4. Within KMotion create a configuration and initialization program
5. Within Mach3 - configure plugin (enter name of KMotion Init program)
6. Within Mach3 - configure motor tuning (set resolution, speeds, and acceleration)
7. Within Mach3 - configure IO Bits.

Note: when using encoder feedback see also: Mach3 Encoder Setup

Note: for configuring probing see also: Mach3 G31 Probe Setup

Note: for information regarding operating steppers in closed loop see also: Closed Loop Steppers

Note: For passing Parameters see also: Passing DROs

Note: For Rigid Tapping see also: Mach3 Rigid Tapping

http://www.artsoftcontrols.com/
http://www.dynomotion.com/Help/Mach3Plugin/Mach3Encoders.htm
http://www.dynomotion.com/Help/Mach3Plugin/Mach3Probe.htm
http://www.dynomotion.com/Help/ClosedLoopStep/ClosedLoopStepper.htm
http://www.dynomotion.com/Help/Mach3Plugin/Mach3DROs.htm
http://www.dynomotion.com/Help/Mach3Plugin/Mach3RigidTapping.htm

KFLOP User Manual 2016

281 | P a g e

1. Install Mach3

Mach3 should be installed before KMotion so that the KMotion installation program can copy the
necessary files (Dynomotion.dll) into the Mach3 plugin directory. The KMotion installation will also
add a registry entry under "App Paths" so that Mach3.exe will have access to the necessary
KMotion DLL libraries, programs, and data files

It is not necessary to load the Mach3 Kernel driver.

If KMotion has already been installed, it should be re-installed to make the necessary links between
the programs.

2. Install KMotion

At the end of the KMotion installation an option to install the Mach3 Plugin will be displayed.

Check the Mach3 Plugin option and select Next.

KFLOP User Manual 2016

282 | P a g e

You will be prompted to enter the directory where Mach3 was installed.

A check will be made that a valid Mach3.exe exists in that directory, and the Dynomotion.dll will be
copied to the plugins subdirectory.

3. Within KMotion configure/tune your motors

Follow the normal procedures to use the KMotion Executive program to configure and tune all of
your motor axes. The simplest method to configure the system is to enter and change values in the
various KMotion Executive Screens, download them to the KMotion Board, and test and tune for
correct operation using the Step Response Screen as well as Console commands.

4. Within KMotion create a configuration and initialization program

After each axis is functioning properly, the configuration for that axis can be copied to the clipboard
as a valid C program code.

See the circled button below.

KFLOP User Manual 2016

283 | P a g e

C Code to configure axis 0 might look like the code shown below. Detailed knowledge of C
programming is not required to paste these into a User Program. The configuration for each axis
should be pasted into a single program. Later this program may be executed at any time to
completely configure the KMotion Board. The KMotion Executive program would not be needed to
do this. The RESET button from within Mach3 will be configured to execute this program.

ch0->InputMode=ENCODER_MODE;
ch0->OutputMode=MICROSTEP_MODE;

ch0->Vel=100.000000;

KFLOP User Manual 2016

284 | P a g e

ch0->Accel=1000.000000;

ch0->Jerk=10000.000000;

ch0->P=1.000000;

ch0->I=0.000000;

ch0->D=0.000000;

ch0->FFAccel=0.000000;

ch0->FFVel=0.000000;

ch0->MaxI=200.000000;

ch0->MaxErr=200.000000;

ch0->MaxOutput=200.000000;

ch0->DeadBandGain=1.000000;

ch0->DeadBandRange=0.000000;

ch0->InputChan0=0;

ch0->InputChan1=1;

ch0->OutputChan0=0;

ch0->OutputChan1=1;

ch0->LimitSwitchOptions=0x0;

ch0->InputGain0=1.000000;

ch0->InputGain1=1.000000;

ch0->InputOffset0=0.000000;

ch0->InputOffset1=0.000000;

ch0->invDistPerCycle=1.000000;

ch0->Lead=0.000000;

ch0->MaxFollowingError=1000000000.000000;

ch0->StepperAmplitude=250.000000;

ch0->iir[0].B0=1.000000;

ch0->iir[0].B1=0.000000;

ch0->iir[0].B2=0.000000;

ch0->iir[0].A1=0.000000;

ch0->iir[0].A2=0.000000;

ch0->iir[1].B0=1.000000;

ch0->iir[1].B1=0.000000;

ch0->iir[1].B2=0.000000;

ch0->iir[1].A1=0.000000;

ch0->iir[1].A2=0.000000;

ch0->iir[2].B0=1.000000;

ch0->iir[2].B1=0.000000;

ch0->iir[2].B2=0.000000;

ch0->iir[2].A1=0.000000;

ch0->iir[2].A2=0.000000;

Besides C code to configure each axis, other commands such as those shown highlighted below
may be used to enable each axis (and set the destination) and to define which axis channels are in
the coordinated motion system. The DefineCoordSystem(0,1,-1,-1); statement defines a two axis

KFLOP User Manual 2016

285 | P a g e

coordinate system where X is axis channel 0, Y is axis channel 1, and the Z and A axes are not
used.

The circled button can be used to save, compile, download, and run the C program in one step.
Note that once a C program has been executed to change configuration settings within the KMotion
Board, the values in the KMotion Executive screens may be different from the current settings within
the board. To synchronize the screens with what is actually in the board the channel should be
"Uploaded".

Additional initialization operations may also be added to the C Progam. These might include
brushless motor phase finding, homing, activating IO bits, etc..

After the Initialization program is finalized and working it should be saved in a known location so
that Mach3 may be configured to execute it as described in the next step.

5. Within Mach3 - configure plugin (enter name of KMotion Init program)

We are now ready to Execute Mach3. The first time Mach3 is executed after adding the Dynomotion
Plugin Mach3 will prompt the user which Motion Device should be used. The Dynomotion Plugin

KFLOP User Manual 2016

286 | P a g e

should be selected. After the Mach3 Application comes up use the Config|Config Plugins menu to
bring up the Config Plugins dialog shown below.

Next click in the circled area to bring up the Dynomotion Plugin Configuration Screen.

KFLOP User Manual 2016

287 | P a g e

Specify the KMotion Initialize User Program that was created in step 4 above (you may browse to
the file using the >> button).

Options to automatically run the program on Mach3 Startup or only once after Mach3 Startup may
also be selected.

Mach3 generates Spindle Messages for On, Off, and Speed Changes. Specify a KMotion Spindle
Speed User Program to handle and perform appropriate actions for the various Mach3 Spindle
Messages. A default SpindleMach3.c program is included in the default installation that will simply
print the messages and desired speeds requested by Mach3. Note that speed is a relative fraction
of the max currently selected pulley's speed. Because KFlop/KMotion is likely to be controlling the
motor speed regardless of the selected pulley, this is usually more appropriate. An appropriate User
Program to perform the appropriate actions to actually drive the spindle should be created to
replace the default program that simply prints the requested operation. There are included
examples for Spindles controlled by a DAC output (SpindleMach3DAC.c) and for Spindles
controlled by Step/Dir outputs (SpindleMach3Jog.c).

KFLOP User Manual 2016

288 | P a g e

Spindle Speed measurement and Single point threading is also supported. A quadrature encoder is
required on the spindle. Specify the Sensor Type as 1 to enable the Spindle measurement.
Configure the Axis Channel that is configured to read the encoder (Note this is not the encoder
channel, rather it is the axis that has the encoder channel configured as its input). Specify the
Update time, Tau, and counts/rev. See here for more information.

Mach3 Home requests may be passed to a User Program to activate any desired Home Sequence.
An example skeleton program which just prints the Mach3 home requests is included as
HomeMach3.c. Another example for use with encoders is described here.

Mach3 permits a general purpose mechanism to make custom calls to any Plugin that are passed
through to a KFlop Custom Notify User Program. Placing a NotifyPlugins(10xxx) call in VB Script of
either a Screen Button or Macro command may then trigger behavior in KMotion/KFlop. Message
Codes from 10000 to 10999 will be sent to KFlop (all others are ignored). Plugin executions are
automatically queued and executed in the sequence they were requested (the previous must
complete before the next is launched). An example skeleton program which just prints the Mach3
notify requests is included as NotifyMach3.c. Another example for use with encoders is described
here.

An I/O bit may be defined that is activated when Mach3 goes into the offline state. Neg True Polarity
may be checked if it is desirable for the bit to be driven low in the off-line state rather than high.

The Windows Buffer ahead Time may be changed to keep more or less buffering ahead in the
KMotion Board. Using a value too small may cause the buffer to run empty and "starve" for data if
Windows becomes non-responsive for longer than that amount of time. Using a value too large will
cause feed rate changes and feed hold commands to be less responsive.

The plugin can be configured to Automatically run Initialize on Mach Startup if desired. Caution:This
option should be left off if there is any potential danger with unexpected machine motion when
launching Mach3.

After setting all parameters press OK to save the parameters into the Mach3 XML parameter file
and return to the main Mach Screen. Pushing Mach3's Reset button will now execute the Initialize
program.

6. Within Mach3 - configure motor tuning (set resolution, speeds, and acceleration)

Select Config|Motor Tuning to bring up the Motor Tuning Dialog. This screen allows the setting of
Machine resolution, Max Velocity, and Max Acceleration for each axis in use. Note that the sliders
are typically not very useful since the max step rates are much higher using a KMotion Motion
Controller than with the original PC Generated Steps. It's usually best to just enter values directly
into the cells.

http://www.dynomotion.com/Help/Cmd.htm#ConfigSpindle
http://www.dynomotion.com/Help/Mach3Plugin/Mach3Encoders.htm#Zero_Buttons
http://www.dynomotion.com/Help/Mach3Plugin/Mach3Encoders.htm#Zero_Buttons

KFLOP User Manual 2016

289 | P a g e

After the parameters have been entered and saved, Press OK to return to the main screen.

7. Within Mach3 - configure IO Bits.

Various M Codes may be used within Mach3 to activate IO bits on KMotion. Select the Menu
Config|Ports & Pins to bring up the Dialog shown below. When using the KMotion Plugin, Pin
Numbers now correspond to KMotion IO Bit Numbers rather than Parallel port Pins. Some of the
terminology on the screen may be misleading as it was designed expecting to use a parallel
port. For IO bit numbers less than 128 specify Port#1. For IO bit numbers 128 or larger, subtract
128 from the bit number and specify Port #2 instead of Port #1. Extended Virtual IO bits 1024-1151
may also be accessed by specifying Port #3 and subtracting 1024 from the bit number (note: the
first 32 Virtual IO will consume less USB bandwidth because they are uploaded in the KFLOP Bulk
Status record so use the first 32 if possible).

Note: Mach3 typically defaults after an initial install with Output #1 enabled for spindle control on
Pin0 (as shown below). Bit 0 is often used on a KMotion board as an Encoder input. Having Mach
configure the IO bit as an output will cause the encoder to be inoperable. Disable the output if this is
the case.

KFLOP User Manual 2016

290 | P a g e

That's it! Reset should now properly initialize the machine. Jogging and G Code should now be
functional.

Refer to the Mach3 documentation for more information on advanced features.

Here is how a GCode file appears on Mach3 Mill.

KFLOP User Manual 2016

291 | P a g e

Here the same example GCode file cut (or more accurately burned) into a piece of wood using a
Harbor Freight Mini-mill driven with KMotion and Mach3.

KFLOP User Manual 2016

292 | P a g e

Mach3 Plugin - with Encoders

The following describes the use of linear glass scale encoders or rotary shaft encoders with Mach3.
The setup process described apply for KFlop operating in open loop mode with encoders as well as
closed loop control.

KFlop/KMotion should first be wired and configured such that the encoders are functional and
scaled (using the InputGain0 parameter) so that the encoder counts match the commanded position
in units of μsteps. To verify that this is properly configured the KMotion.exe Step Response Screen
may be used for verification. The Plot of Position Error should show small errors (typically <200
μSteps) for a Move Plot if properly configured.

Since the encoder position is already scaledwithin KFlop/KMotion to match the μsteps/Unit scale of
the motor, the Mach3 Encoder resolution should be set to the same value as the Motor "Tuning" as
shown below. The Encoder/MPG screen is opened using the Config|Ports and Pins Menu. The Port
and Pin definitions are not relevant when using KMotion/KFlop and should be set to some unused
Port.

http://www.dynomotion.com/Help/ClosedLoopStep/ClosedLoopStepper.htm
http://www.dynomotion.com/Help/StepScreen/StepScreen.htm

KFLOP User Manual 2016

293 | P a g e

Zero Buttons

Mach3 "Zeros" a DRO by adjusting the currently selected work offset such that the DRO will read
zero. Since the glass scales are the best reference, the commanded position is adjusted to match
the encoder position, before Mach3 is told to compute the new work offset.

NotifyPlugins(10100) 'tell KFlop to set command to encoder
Sleep 300 'make sure mach updates
DoOEMButton (1008) 'calculate work offset

KFLOP User Manual 2016

294 | P a g e

NotifyPlugins(10101) 'tell KFlop to set command to encoder
Sleep 300 'make sure mach updates
DoOEMButton (1009) 'calculate work offset

NotifyPlugins(10102) 'tell KFlop to set command to encoder
Sleep 300 'make sure mach updates
DoOEMButton (1010) 'calculate work offset

In the Config|Config Plugins|Dynomotion set an appropriate KFlop User Program that will
process the NotifyPlugin Message Codes to set KFlops internal Commanded Destination to the
Current Encoder Positions. Typical program for 3 axes shown below. Note that the Message code is
defined to be passed to the KFlop User Program via persist.UserData[6]

KFLOP User Manual 2016

295 | P a g e

Example File: <Install Dir>\C Programs\NotifyZeroEncoderMach3.c

#include "KMotionDef.h"

//Plugin calls for Mach3 NotifyPlugins Commands

#define X 0

#define Y 1

#define Z 2

main()

{

 int msg = persist.UserData[6]; // Mach3 notify Message 10000-10999

 printf("Mach3 Notify Call, Message = %d\n",msg);

 if (msg==10100)

 {

 // adjust the commanded position to match the glass scale encoder

 DisableAxis(X);

 EnableAxisDest(X,chan[X].Position);

 }

 if (msg==10101)

 {

 // adjust the commanded position to match the glass scale encoder

 DisableAxis(Y);

 EnableAxisDest(Y,chan[Y].Position);

 }

 if (msg==10102)

 {

 // adjust the commanded position to match the glass scale encoder

 DisableAxis(Z);

 EnableAxisDest(Z,chan[Z].Position);

 }

}

REF Buttons

Mach3 REF buttons are used to set the initial Machine coordinates either by simply Zeroing them or
performing a home operation into a switch.

The REF X, REF Y, REF Z etc... buttons may require editing using a screen editor. We recommend
the one written by Klaus Dietz.

KFLOP User Manual 2016

296 | P a g e

The Ref buttons should be edited to perform the standard Mach3 Ref operations. See the settings
selected for the Ref buttons shown below when using Klaus' free Mach Screen Editor. The standard
Ref operations for Mach3 is to request the Plugin to perform the Home Operation (actually labeled
purge in the plugin).

KFLOP User Manual 2016

297 | P a g e

The Dynomotion Plugin passes these Home requests to KFlop to handle with a Home User
Program. In the Config|Config Plugins|Dynomotion set an appropriate KFlop User Home
Program. A flag variable is also passed to tell which axis is to be homed (Note that the flags is
defined to be passed to the KFlop User Program via persist.UserData[5]). In the case with
encoders, both the Encoder Position and the Commanded Destination should be zeroed. Prior to
Zeroing if any homing motion (to a switch for example - See: SimpleHome3Axis.c in the C Programs
directory) may also be added into the program.

Note: if Homing Inputs are enabled in Mach3 | Config | Ports and Pins | Input Signals | X Home, Y
Home, Z Home, A Home, B Home, C Home then Mach 3 will NOT call the Plugin to do
Homing. Please make sure these Inputs are NOT enabled.

KFLOP User Manual 2016

298 | P a g e

Example File: <Install Dir>\C Programs\HomeEncoderMach3.c

#include "KMotionDef.h"

//Plugin calls for Mach3 Home (actually Purge) Commands

//Called from Mach3 "REF" command

//in this case just Zero the measured position (encoder)

//and set the commanded destination to zero

#define X 0

#define Y 1

#define Z 2

main()

{

 int flags = persist.UserData[5]; // Mach3 flags bit0=X, bit1=Y,

Bit2=Z, etc...

 printf("Mach3 Home Call, flags = %d\n",flags);

 if (flags & 1)

 {

 DisableAxis(X);

 Zero(X);

 EnableAxisDest(X,0.0);

 }

 if (flags & 2)

 {

 DisableAxis(Y);

 Zero(Y);

 EnableAxisDest(Y,0.0);

 }

 if (flags & 4)

 {

 DisableAxis(Z);

 Zero(Z);

 EnableAxisDest(Z,0.0);

 }

}

KFLOP User Manual 2016

299 | P a g e

Mach3 Plugin - Probe Setup

The following describes the use of DynoMotion Probing with Mach3. Probing in Mach3 is selected
by using the G31 code. Such as:

G31 Z-4 F40

This example command line would cause a motion from the current position to a absolute position
of z = -4 at a feed rate of 40 units/minute and stop as soon as the probe input becomes active.

When the probe input becomes active the current positions of all axes will be captured and the
motion will decelerate to a stop in a controlled manner. Mach3 variables 2000-2005 will be filled
with the captured position.

The following sequence might be used to perform a probe and then perform a move relative to the
captured Z position.

G31 Z-4.0 F40 (Probe in Z)
G1 Z #2002 (move back to trip point)
M30

Note: If the Probe input is already active at the beginning of the probe, or the motion completes
without the Probe input ever becoming active, an error will be displayed and G Code execution will
stop.

Required KMotion/KFLOP User Program

In order to perform Probing, the Notify User Program must be configured to properly handle
message 20000 and selected in the Mach3 Plugin configuration.

KFLOP User Manual 2016

300 | P a g e

Add the message handler shown below to the Notify program for your system. During probing the
DynoMotion Plugin sends a Notification 20000 message to the configured KMotion/KFlop Notify
User Program.

The message handler must:

#1 set status (user var 62) to zero
#2 wait for the probe to become active
#3 sample the current positions of the defined axes (as doubles into 50-61)
#4 set status to 1 or 2 depending on if the probe was ever inactive
#5 feedhold the system
#6 exit

Note: defines below in PC-DSP.h should be used to symbolically reference the persist.UserData
Variables

#define MACH3_PROBE_STATUS_VAR 62
#define MACH3_PROBE_RESULTS_VAR 50

KFLOP User Manual 2016

301 | P a g e

In most cases the only modification required will be the defined bit number and active state.

However any number of other techniques might be used such as monitoring analog inputs, or
capturing other variables such as encoder positions.

Excerpt from Example File: <Install Dir>\C Programs\NotifyProbeMach3.c

 // handles probing

 //
 // flag is 0 - while watching for probe hit
 // flag is 1 - if probe was already set from start
 // flag is 2 - after successful probe hit

 // flag is 3 - Tells Plugin to upload status (3) to
 // DRO 1100 and let User handle the error
 //

 // returns the captured results in User Variables
 // X - 50+51
 // Y - 52+53
 // Z - 54+55

 // A - 56+57
 // B - 58+59
 // C - 60+61

 // status result 62

 #define PROBE_BIT 0
 #define PROBE_ACTIVE_STATE 1

 #define PROBE_ERROR_HANDLING 0 // 0 Stops Mach3 on probe error
// #define PROBE_ERROR_HANDLING 3 // 3 User must query DRO 1100 and

handle error

 if (msg==20000)
 {
 double *d = (double

*)&persist.UserData[MACH3_PROBE_RESULTS_VAR];
 int flag=1;

 persist.UserData[MACH3_PROBE_STATUS_VAR]=PROBE_ERROR_HANDLING

;

 while (ReadBit(PROBE_BIT)!=PROBE_ACTIVE_STATE)

 {
 flag=2;
 WaitNextTimeSlice();
 }

 if (CS0_axis_x>=0) d[0]=chan[CS0_axis_x].Dest;
 if (CS0_axis_y>=0) d[1]=chan[CS0_axis_y].Dest;

KFLOP User Manual 2016

302 | P a g e

 if (CS0_axis_z>=0) d[2]=chan[CS0_axis_z].Dest;

 if (CS0_axis_a>=0) d[3]=chan[CS0_axis_a].Dest;
 if (CS0_axis_b>=0) d[4]=chan[CS0_axis_b].Dest;
 if (CS0_axis_c>=0) d[5]=chan[CS0_axis_c].Dest;

 persist.UserData[MACH3_PROBE_STATUS_VAR]=flag;
 StopCoordinatedMotion();
 }

}

KFLOP User Manual 2016

303 | P a g e

Mach3 Plugin - Passing DROs

Mechanism for transferring values back and forth between Mach3 and KFLOP

Mach3 User DROs 1 to 50 map to KFlop UserData 0 to 99 (2 words each double)

To Read from KFLOP to Mach3 use NotifyPlugins codes 18001 to 18050
To Write from Mach3 to KFLOP use NotifyPlugins codes 19001 to 19050

Example MACH3 SIDE

SetOEMDRO(1007,123.456) 'Put a value in a Mach DRO

NotifyPlugins(19007) 'Send it to KFLOP

Sleep(3000) 'Wait for KFLOP to modify and copy it

NotifyPlugins(18008) 'Read the result from KFLOP

x=GetOEMDRO(1008) 'Check the value passed back

Example KFLOP SIDE

#include "KMotionDef.h"
#define DROIN 7

#define DROOUT 8

main()

{

 double *pin = (double *)&persist.UserData[(DROIN -1)*2];

 double *pout = (double *)&persist.UserData[(DROOUT-1)*2];
 for(;;)

 {

 Delay_sec(2);

 *pout = *pin + 999;

 printf("DROIN %d = %f DROOUT %d=%f\n",DROIN,*pin,DROOUT,*pout);

 }

}

KFLOP User Manual 2016

304 | P a g e

Mach3 Plugin - Rigid Tapping

To perform Rigid Tapping from Mach3 the tapping parameters are set into GCode Variables, then a
Macro (M84) is called which downloads the parameters to KFLOP, notifies KFlop to perform the Tap
Cycle, then waits until KFLOP sets a variable indicating the operation has completed.

A requirement for Rigid Tapping is that the Spindle has encoder feedback and is possible to move
in a fairly controlled manner. The Z axis motion is "geared" to the measured Spindle Encoder
Position throughout the cycle.

There are three parts to the process: The GCode, the M84 Macro, and the KFlop User Program.
Examples can be found here.

Example Rigid Tap Call From GCode

We use a Macro M84 as Mach3 uses the normal G84 Tap cycle for a floating tapholder technique
and doesn't currently support a rigid tap GCode.

Note that the forward cutting rate (RPM) and the retraction rate (RPM) can be defined separately. A
cyclic forward/retract motion can be specified to cut the thread to the total depth. If a simple single
motion is desired, set the Z depth forward motion to the Z depth Total.

G0X0Y0Z5

(Call a Rigid Tap Sequence)
#10=20 (TPI - Threads per inch)
#11=700 (Forward Cutting RPM)
#12=1000 (Retract RPM)
#13=0.75 (Z depth Total inches)
#14=0.2 (Z depth Forward per Motion)
#15=0.05 (Z depth Retract per Motion)
M84

G0X4Y0Z5

(Call a Rigid Tap Sequence)
#10=20 (TPI - Threads per inch)
#11=700 (Forward Cutting RPM)
#12=1000 (Retract RPM)
#13=0.75 (Z depth Total inches)
#14=0.2 (Z depth Forward per Motion)
#15=0.05 (Z depth Retract per Motion)
M84

M2

http://www.dynomotion.com/Software/RigidTap/

KFLOP User Manual 2016

305 | P a g e

Mach3 M84 Macro

This macro moves the GCode Tapping Variables to Mach3 User DROs, downloads then to KFLOP
UserData variables, Triggers KFLOP to perform the Tap Cycle, then waits until KFLOP sets a User
Data Variable indicating the cycle is complete.

'Macro for Rigid Tappin with Dynomotion KFLOP
'
' pass variables to KFLOP
'
' Var DRO KFLOP UserVar Description
' #10 1010 18 19 TPI - Threads per inch
' #11 1011 20 21 Forward Cutting RPM
' #12 1012 22 23 Retract RPM
' #13 1013 24 25 Z depth Total inches
' #14 1014 26 27 Z depth Forward per Motion
' #15 1015 28 29 Z depth Retract per Motion
' 1016 30 31 Set by KFLOP when complete

'Move the GCode Vars into DROS and send them to KFLOP User Vars
For i=0 To 5
Call SetUserDRO(1010+i, GetVar(10+i))
NotifyPlugins(19010+i)
Next i

Call SetUserDRO(1016, 0) 'clear the complete flag
NotifyPlugins(19010+6)

NotifyPlugins(10084) 'do the TAP!!

While GetUserDRO(1016)=0
Sleep(50)
NotifyPlugins(18016) 'upload the complete flag
Wend

KFLOP Notify User C Program that performs the Rigid Tap Cycle

The C Program that performs the Rigid Tap Cycle. This assumes that the Spindle axis can be
controlled like a Servo Axis within KFLOP (although it is not defined as an axis within Mach3). The
defines must be set per your specific system. A low pass filter is used to smooth the commanded Z
motion for the case where the Spindle Motion might be too Jerky for the Z Axis to follow without
possibly stalling, it also smoothes the response that would be otherwise stepped because user
programs only execute every other servo sample. A Tau of 0.001 performs as a low pass filter with
a time constant of 1ms.

KFLOP User Manual 2016

306 | P a g e

#include "KMotionDef.h"

//Plugin calls for Mach3 NotifyPlugins Commands

void Tap(void);

main()

{

 int msg = persist.UserData[6]; // Mach3 notify Message 10000-10999

 printf("Mach3 Notify Call, Message = %d\n",msg);

 if (msg==10084)

 {

 Tap();

 }

}

// R I G I D T A P P I N G

#define ZAXIS 7

#define SPINDLE_AXIS 6

#define Z_CNTS_PER_INCH -20000.0

#define CNTS_PER_REV (8192*14/16)

#define TAU 0.001

double SlaveGain,ToCut,TotalCut,Z0,S0;

void DoSlave(void);

void DoTap(double Dist, double Rate, double TPI);

void Tap(void)

{

 // #10 1010 18 19 TPI

 // #11 1011 20 21 Forward Cutting RPM

 // #12 1012 22 23 Retract RPM

 // #13 1013 24 25 Z depth Total inches

 // #14 1014 26 27 Z depth Forward per Motion

 // #15 1015 28 29 Z depth Retract per Motion

 // #16 1015 30 31 Complete Flag

 double TPI = *(double *)&persist.UserData[18];

 double CutRPM = *(double *)&persist.UserData[20];

 double RetractRPM = *(double *)&persist.UserData[22];

 double ZDist = *(double *)&persist.UserData[24];

 double ZForward = *(double *)&persist.UserData[26];

 double ZReverse = *(double *)&persist.UserData[28];

 double FeedRate = CutRPM/(TPI*60);

KFLOP User Manual 2016

307 | P a g e

 double RetractRate = RetractRPM/(TPI*60.0);

 printf("TPI = %f\n",TPI);

 printf("FeedRate = %f\n",FeedRate);

 printf("RetractRate = %f\n",RetractRate);

 printf("ZDist = %f\n",ZDist);

 printf("ZForward= %f\n",ZForward);

 printf("ZReverse = %f\n",ZReverse);

 // Slave the Z Axis to the Spindle

 SlaveGain = Z_CNTS_PER_INCH/(CNTS_PER_REV * TPI);

 Z0 = chan[ZAXIS].Dest;

 S0 = chan[SPINDLE_AXIS].Dest;

 // in case there is significant spindle position error move there

first

 Move(ZAXIS,(chan[SPINDLE_AXIS].Position-S0)*SlaveGain+Z0);

 while (!CheckDone(ZAXIS)) ;

 TotalCut=0.0;

 while (TotalCut < ZDist)

 {

 if (TotalCut + ZForward > ZDist) // last feed

 {

 // yes, do any remaining

 DoTap(ZDist-TotalCut, FeedRate, TPI);

 // retract fully

 DoTap(-ZDist, RetractRate, TPI);

 TotalCut=ZDist;

 }

 else

 {

 // no, just cut a bit

 DoTap(ZForward, FeedRate, TPI);

 DoTap(-ZReverse, RetractRate, TPI);

 TotalCut+=ZForward-ZReverse;

 }

 }

 Delay_sec(1.0);

 Move(ZAXIS,Z0); // move back to where we started

 while (!CheckDone(ZAXIS)) ;

 *(double *)&persist.UserData[30]=1.0; // set flag that we are

complete

 printf("Tap Complete\n");

}

void DoTap(double Dist, double Rate, double TPI)

KFLOP User Manual 2016

308 | P a g e

{

 // Tap down

 MoveRelAtVel(SPINDLE_AXIS, Dist*TPI*CNTS_PER_REV,

Rate*TPI*CNTS_PER_REV);

 while(!CheckDone(SPINDLE_AXIS))

 DoSlave();

}

void DoSlave(void)

{

 MoveExp(ZAXIS,(chan[SPINDLE_AXIS].Dest-S0)*SlaveGain+Z0, TAU);

 WaitNextTimeSlice();

}

KFLOP User Manual 2016

309 | P a g e

KStep 1.2 Hardware

Function Parameter Specification

Micro Stepper
Drivers

Type
Number
Microstepping
Supply Voltage
Motor Coil Current
Max Step Rate

Bipolar Dual Full Bridge Chopper
Drivers
4
16X
12-48VDC Common
Jumper Programmable 8 levels (0.6 -
5A)
500KHz

Logic Inputs
(Step,Dir,Enable,Relay
PWM,MuxCtrl)

Voltage
Current

3.3V LVTTL (2.4V min High 0.4V max
low)
16ma max

Analog Number
Input Supply
Range
Output Impedance
Response, Tau

1 fully Isolated
5-30V
<1K ohm
10ms

Inputs Type
Number
Internal Series
Resistor
Min On Voltage
Max Allowed
Voltage
Max Off Voltage

Opto Isolated Common Anode
16
10K ohm
11V
25V
1.0V

Outputs Type
Number
Type
Max Voltage
Max Current

Opto Isolated
2
Opto Isolated Darlingtion
30V
100ma

Voltage Clamp Power peak
Power Average (3
sec)
Levels

1KW
10W
Jumper Programmable (13V,
25V,37V,49V)

5V Logic Supply Voltage
Max Current

+5V ± 5%
0.05 A

3.3V Logic Supply Voltage
Max Current

+3.3V ± 5%
0.05 A

Terminal Strips Screw Terminals 24 Pluggable Screw Terminals
(6) x 4 pin
5mm pitch

KFLOP User Manual 2016

310 | P a g e

KStep – Connector Pinouts

Environment Operating
Temperature
Storage
Temperature
Humidity

0-40º C
0-40º C
20-90% Relative Humidity, non-
condensing

Dimensions Length
Width
Height

5.5 inches (140mm)
6.0 inches (151 mm)
1.0inches (24 mm)

Green RoHS Compliant

KFLOP User Manual 2016

311 | P a g e

 J1 Motor Power

Motor power VBB from 12-48V may be applied through J1 or alternately through JR1. For
applications that require more than 10A of supply current both of the GND and VBB connections
should be used.

Caution Voltage Clamp jumpers must be set to a Higher Voltage than the applied voltage.

Caution if JR1 is connected to a PC Power Supply 12V will be applied to VB

J2 J3 J4 J5

KFLOP User Manual 2016

312 | P a g e

Connect Stepper Motors to connectors J2 through J5. A Stepper Motor has two independent coils
A and B. This should be verified with an Ohmmeter. Connect one motor coil across the A terminals
and the other coil across the B terminals.

Caution cross wiring the motor terminals is likely to cause damage to KStep and/or the
motor.

Voltage Clamping

KStep features a jumper programmable Voltage Clamping Circuit. Voltage spikes due to
Regenerative Braking and other sources can potentially raise the supply voltage up to a level that
can damage electronics including KStep or the power supply. Voltage Spikes may also cause a
power supply to trip a fault and shut down. KStep's Voltage clamp can be used to avoid these
problems. KStep's Voltage Clamp can be programmed for 4 different voltage levels. It is not
possible to disable the Voltage Clamp but the clamping voltage level may be changed. With all
jumpers removed the Voltage will be clamped at 49V. Each jumper added will reduce the Clamping
voltage by 12V. The order of the jumpers is not important as each reduces the Voltage by the same
amount (12V). This allows common supply voltages of 12, 24, 36, and 48V to be used.

Caution connecting a supply voltage higher than the clamping voltage will draw excessive
current and is likely to cause damage to KStep or the Power Supply.

Jumpers
Installed

Example Clamping Level

None None
49V

1 A
37V

2 A+B
25V

3 A+B+C
13V

KFLOP User Manual 2016

313 | P a g e

JP26

KStep can accept Step/Dir signals in from either JP26 or JP36 whichever is more
convenient. Normally if two KSteps are connected to KFLOP in order to have 8 axes in the system
then JP26 will be used for the 2nd KStep. KFLOP drives Step/Dir Generators 4 - 7 on its JP5
connector which when connected to KStep's JP26 connector will drive Motors 0 - 3. When driving
signals into JP26 GND, +5V and Enable must be provided into KStep in some manner. J6 is
usually the simplest but JR1 and JP36 are also possibilities.

Pin
KFLOP

Name
KFLOP
Output

KStep

Input

1 IO36
Step 4 Step 0

2 IO37
Dir 4 Dir 0

3 IO38
Step 5 Step 1

4 IO39
Dir 5 Dir 1

5 IO40
Step 6 Step 2

6 IO41
Dir 6 Dir 2

7 IO42
Step 7 Step 3

8 IO43
 Dir 7 Dir 3

KFLOP User Manual 2016

314 | P a g e

Disable Optos Jumper

KStep normally drives JP36 pins 11 - 14 with selected Opto Input Data. If Opto Input Data is not
desired this jumper disables this feature and leaves these pins in a high impedance state. This
might be necessary if the connection to KFLOP desires to use the associated pins for some other
purpose such as KFLOP Encoder inputs #2 and #3.

JR1

JR1 is a molex Disk drive type connector that can be used to provide Motor power (VBB) and +5V
to KStep. Motor power is common to all 4 Motor Drives and may be applied either through JR1 or
J1 screw terminals. A PC Power Supply often provides +5V on pin 4 and +12V on Pin 1 so caution
should be made to assure different power supply voltages are not connected to both JR1 and
J1. The +5V connection is used to power the Motor driver circuits. The +5V and GND connections
are to the motor side of the isolation and will be isolated from the KFLOP side if the Isolation
Jumpers are removed.

KFLOP User Manual 2016

315 | P a g e

JP33

KStep adds 2 opto isolated relay drivers (100ma @ 36V), one Analog Output, and 16 opto isolated
12-24V inputs. All these IO are optically isolated regardless of the Isolation Jumpers set for the
Isolation on the Step/Dir and enable signals. Opto Inputs have a common Anode normally
connected to either +12V or +24V. Shorting any of the OPTO- pins to GND will activate the input.
The Opto Inputs have a 10K ohm series resistance.

JP33

Pin

KSTEP

Signal
KFLOP Related

Signal

1 Relay0+
IO 0 Output

2 Relay0-
IO 0 Output

3 Relay1+
IO 1 Output

4 Relay1-
IO 1 Output

5 Analog Vcc

6 Analog Out IO 44 PWM
Output

KFLOP User Manual 2016

316 | P a g e

7 Analog Gnd

8 Opto Anode

9 Opto IN 0
IO 168 Input

10 Opto IN 1 IO 169 Input

11 Opto IN 2 IO 170 Input

12 Opto IN 3 IO 171 Input

13 Opto IN 4 IO 172 Input

14 Opto IN 5 IO 173 Input

15 Opto IN 6 IO 174 Input

16 Opto IN 7 IO 175 Input

17 Opto IN 8 IO 176 Input

18 Opto IN 9 IO 177 Input

19 Opto IN 10 IO 178 Input

20 Opto IN 11 IO 179 Input

21 Opto IN 12 IO 180 Input

22 Opto IN 13 IO 181 Input

23 Opto IN 14 IO 182 Input

24 Opto IN 15 IO 183 Input

25 Vdd +5V
+5V KFLOP (if

non isolated)

26
GND

KSTEP

GND KFLOP (if

non isolated)

KFLOP User Manual 2016

317 | P a g e

Optically isolated Inputs

The input circuit for 4 of the 16 opto inputs is shown below. Note there is a common Anode for all 16
opto inputs which is normally tied to a +12 or +24V supply. Each of the negative opto pins are then
switched to ground (return for the +12 or +24V supply).

External Wiring would typically be arranged such as:

KFLOP User Manual 2016

318 | P a g e

Optically isolated PWM to Analog Circuit

A 3.3V PWM output from KFLOP IO 44 JP7 pin 5 is normally connected to KStep JP36 Pin 5 to
drive the PWM to Analog circuitry. Often a VFD will have 3 input terminals where a potentiometer
can be connected as speed control. The three connections AnalogVcc, AnalogOut, and AnalogGnd
can be connected to perform a similar function as a potentiometer. The AnalogOut voltage will vary
from AnalogGnd to AnalogVcc voltage as a function of the PWM duty cycle.

Relay Driver Outputs

Two Optically Isolated Outputs are provided to drive medium power devices such as relay
coils. Loads up to 30V @100ma may be driven.

The internal KStep circuitry is shown below which converts the incoming 3.3V LVTTL inputs to
darlington transistor outputs.

KFLOP User Manual 2016

319 | P a g e

A typical wiring diagram driving 24V relays.

JP31JP32 PFD1 PFD2 Jumpers

These Jumpers can be used to control the Fast/Slow/Mixed delay settings of all 4 Motor Drives. In
almost all cases these jumpers should remain removed for best performance.

KFLOP User Manual 2016

320 | P a g e

Current Setting Jumpers

Current for each Stepper Coil is set with a set of 3 jumpers labeled H M L (high, medium, low).

Both sets of 3 jumpers for each motor coils must be set to the same level.

H M L Current (Amps)

Removed Removed Removed 0.63

Removed Removed Installed 1.25

Removed Installed Removed 1.88

Removed Installed Installed 2.50

Installed Removed Removed 3.13

Installed Removed Installed 3.75

Installed Installed Removed 4.38

Installed Installed Installed 5.00

JP36 To KFLOP

JP36 is designed to connect directly to KFLOP's JP7 in a 1:1 connection. KFLOP is then able to
supply the 4 sets of Step/Dir signals, the Enable, the Analog PWM signal, the 2 Relay Driver
outputs, and connections for the 16 opto inputs, as well as +5V (used if running without opto
isolation). To conserved KFLOP IO pins the 16 opto inputs are read back in a multiplexed fashion 4
bits at a time where 2 outputs from KFLOP select which bank of 4 are currently selected. +3.3V is
also provided to power the opto multiplexing circuitry.

KFLOP User Manual 2016

321 | P a g e

JP34 JP35 Isolation Jumpers

KStep allows all the Motor Power and +5V Mosfet circuitry to be totally optically isolated from the
KFLOP Step/Dir and Enable signals. To operate with total isolation remove JP34 and
JP35. However in this mode an additional +5V supply must be provided and applied to either J6 or
JR1. With the jumpers installed KStep will make use of KFLOP +5V and KFLOP GND coming in
through connector JP36 and no additional supply will be required. The Block Diagram shows how
the isolation is sectioned.

Regardless of these jumpers installed or not the 12-24V Optically isolated Inputs, the 2 Relay Driver
outputs, and the Analog Output will always be fully optically isolated.

J6 - GND, +5V, Enable, 3.3V GND

http://www.dynomotion.com/Help/BlockDiagramKStep.htm

KFLOP User Manual 2016

322 | P a g e

J6 provides a connection point for +5V and GND to power the KStep Mosfet Drive Circuitry if
operated in Isolated mode. The Enable connection allows a means of enabling KStep amplifiers if
JP36 is not used to enable the amplifiers. Controller 3.3V GND is the same GND as on JP36 which
is the KFLOP or Controller Ground which is reference for the Step/Dir signals and Enable
Signals. The Isolation Jumpers can be used to isolate or connect the two GND terminals on this
connector.

 KStep Block Diagram

KFLOP User Manual 2016

323 | P a g e

Board Layout

KFLOP User Manual 2016

324 | P a g e

Using KStep

KStep is a high efficiency 4-axis microstepping drive that can drive four motors with up to 5Amps @
48V each. In addition to the 4 motor drives, KStep also provides additional I/O features:

 Sixteen (16) 12-24V tolerant optically isolated filtered inputs
 Two (2) optically isolated relay driver type outputs, each good for 0.1A @ 30V
 One (1) isolated PMW to Analog output

All controller signals are 3.3V/LVTTL compatible. An on-board voltage clamp circuit to protect
against regenerative over voltage is also included. KStep is designed to snap together with KFLOP
for easy plug and play operation. A single 26-pin ribbon cable provides all the logic, power, Step/Dir
Signals, Enable, Relay driver, Analog PWM, and Optically isolated input connections between the
Kstep and KFLOP boards. If necessary, two KSteps can be connected to a single KFLOP to drive a
total of 8 motors.

Figure 1 - Kstep

KFLOP User Manual 2016

325 | P a g e

Figure 2 – Kstep + KFLOP

Configuring KFLOP for use with KStep

Configuring KStep is fairly straightforward, as it is normally used in an open loop system (although it
is possible to operate in closed loop stepper mode) so all feedback, servo, PID, Filter, Feedforward
and commutation parameters are not used and can be ignored. KStep is effectively a Step/Dir
driver, so it makes use of the Step/Dir Output mode in KFLOP (See the items circled in red below -
Note that output mode type "Step Dir" is selected). The screen shown is the Output Channel
selection for KStep Motor channel #0. Note that output channel 8 is selected instead of 0 as you
might assume. As KStep requires a LVTTL signal, rather than using Output channels 0 through 4,
Output channels 8 through 11 respectively should be used instead, as they provide a LVTTL signal.
See here for more information. An output gain of -1 may be specified to reverse the direction of
motion.

Note: for the pulse polarity and pulse time to be set properly, the following line of C Code needs to
be executed after every power up. FPGA(STEP_PULSE_LENGTH_ADD) = 63 + 0x80; // set
polarity and pulse length to 4us When using the default settings, there is marginal timing on
direction setup which may result in "drift" caused by a microstep in the wrong direction when
changing directions. This line of Code is already included in the Example C Initialization Programs
(i.e. InitKStep3Axis.c)

FPGA(STEP_PULSE_LENGTH_ADD) = 63 + 0x80; // set polarity and pulse length to 4us

Example Axis configurations are also provided as KStepAxis0.mot, KStepAxis1.mot,
KStepAxis2.mot, KStepAxis3.mot

http://www.dynomotion.com/Help/ClosedLoopStep/ClosedLoopStepper.htm
http://www.dynomotion.com/Help/StepAndDirection/StepAndDir.htm
http://www.dynomotion.com/Help/StepAndDirection/StepAndDir.htm

KFLOP User Manual 2016

326 | P a g e

Example Axis configurations are provided in the C:\KMotion431\KMotion\Motors directory
(assuming a default install location). KStepAxis0.mot, KStepAxis1.mot, KStepAxis2.mot and
KStepAxis3.mot are the most basic configurations. Limit switch options are also configured on this
screen. KStep's optically isolated 12-24V Inputs are commonly used to connect Limit switches and
are referenced as Input Bits 168 through 183 inclusive. If you are using NC (normally closed) type
limit switches, this means that the inputs are normally high and become low when activated. In this
case the "Stop when low" option should be selected. If using NO (normally open) type limit
switches, this means the inputs are normally low, and become high when activated. In this case, the
"Stop when low" option should be cleared. For more info see here.

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Limit_Switch_Options

KFLOP User Manual 2016

327 | P a g e

Motion profile settings on the Step Response Screen are used

Enable KStep Amplifiers

An amplifier enable signal is required to enable the KStep Full Bridge Amplifiers. One signal
enables all four of the KStep amplifiers. The enable signal is positive true, meaning the drives are
enabled when a 3.3V LVTTL (sourcing) signal is received. When using a 26-pin ribbon cable to
connect KStep (JP 36) and KFLOP (JP 7), this signal is routed to KFLOP's IO 45, which must be set
as an output, and also set high to enable the drives. Note that the enable signal is only optically
isolated from VBB and GND when KSTEP is in isolated mode.

If JP36 is not being used to connect KFLOP to KStep, then a 3.3V enable signal may be applied to
a screw terminal on J6 instead. If two KSteps are being used (for driving 8 motors), then the screw
terminals on J6 should be used as an output on the first KStep to daisy chain the enable signal to
the second KStep.

KFLOP User Manual 2016

328 | P a g e

For testing purposes KStep may be enabled using the Digital I/O Screen as shown below.

From C code the Amplifiers can be enabled with the following code.

 SetBitDirection(45,1); // set Enable Signal as Output

 SetBit(45); // Enable the KStep Amplifiers

It's possible to write code to enable the amplifiers as soon as motion is detected and disabled after
a period of time with no motion. Here is an example:

double T0, LastX=0, LastY=0, LastZ=0;

for (;;) // loop forever

 {

KFLOP User Manual 2016

329 | P a g e

 WaitNextTimeSlice();

// Service Amplifier disable after no activity for a while

if (ch0->Dest != LastX || ch1->Dest != LastY || ch2->Dest != LastZ)

 {

// we moved - enable KStep Amplifers

SetBit(45);

 T0 = Time_sec(); // record the time and position of

last motion

LastX=ch0->Dest;

LastY=ch1->Dest;

LastZ=ch2->Dest;

 }

 else

 {

 if (Time_sec() > T0 + 10.0) ClearBit(45);

 }

 }

Digital Status

The state of the Optically Isolated 12-24V Digital Inputs can be observed by selecting the
"Virtual/KSTEP" Tab on the Digital I/O Screen. Each input will be marked as active if current is
flowing through the optical isolation circuit. For input circuits and pinouts see here. The KStep Opto
Inputs are actually virtual inputs that are multiplexed in through KFLOP I/O. KFLOP can perform this
multiplexing automatically by setting the global variable KStepPresent. The following line of C
code should be added to your Init.c program:

KStepPresent=TRUE;

http://www.dynomotion.com/Help/SchematicsKStep/ConnectorsKStep.htm#Optically_isolated_Inputs

KFLOP User Manual 2016

330 | P a g e

Relay Driver Outputs

The Optically Isolated 24V outputs can be observed and controlled by selecting the KFLOP tab on
the Digital I/O Screen. Each output will be marked as active if current is flowing through the optical
isolation circuit. The KStep outputs are the same as the standard KFLOP outputs except they are
optically isolated and amplified to handle up to 24V. For output circuit and pinouts see.

file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/SchematicsKStep/ConnectorsKStep.htm%23Relay_Driver_Outputs

KFLOP User Manual 2016

331 | P a g e

To make use of the outputs within a C program the following C code shows an example of enabling

both the outputs, turning them on, then turning them off.

SetBitDirection(0,1); //set as output

SetBitDirection(1,1); //set as output

SetBit(0); // turn output on

SetBit(1); // turn output on

ClearBit(0); // turn output off

 ClearBit(1); // turn output off

KFLOP User Manual 2016

332 | P a g e

Analog Output

The KStep Analog output is a low Speed (10ms time constant) isolated analog output that is
commonly used as a VFD Spindle Speed Control signal. KFLOP outputs a 3.3V digital PWM on IO
44 to KSTEP which optically isolates and filters it to create an analog signal. Isolated power and
ground (often supplied by the VFD) are required. The analog output voltage will be a proportion of
the supplied voltage relative to the duty cycle of the PWM signal. For example a 75% high duty
cycle will provide a voltage which is approximately 75% of the supplied voltage.

To configure KFLOP to output the appropriate PWM signal into KSTEP the configuration code
below should be used. There is an FPGA option to move PWM0 (which normally is output on
connector JP6 with the other 7 PWM outputs) over to JP7 Pin5 IO 44. IO 44 must be configured as
an output; the PWM Prescale dividers set to a reasonable value (like?), and then enable PWM.

 FPGA(KAN_TRIG_REG)=4; // Mux PWM0 to JP7 Pin5 IO 44 for KSTEP

 SetBitDirection(44,1); // define bit as an output
 FPGA(IO_PWMS_PRESCALE) = 46; // divide clock by 46 (1.4 KHz)

 FPGA(IO_PWMS+1) = 1; // Enable

The Analog output has nonlinearity near the 0% duty cycle region due to opto coupler pulse shaping
effects. The nonlinearity can be mostly corrected in software through calibration. Below is a raw
uncorrected analog output with a PWM frequency of 1.4KHz (PWM Prescale = 46).

KFLOP User Manual 2016

333 | P a g e

Using a correction algorithm where the PWM value that will most closely produce the desired output
voltage is determined from a table lookup approach for the first 7 PWM counts, and a simple linear
interpolation is used for determining PWM settings 7 through 240 the linearized results are shown
below. Although the signal is now linear, the resolution is low for settings below ~5% full scale.

KFLOP User Manual 2016

334 | P a g e

Below is the C function used to linearize the output.

// PWM->Analog Correction

//
// assume very non-linear for first few count and linear thereafter
//
// Measure output ratio for first 0-7 counts then at 240

float V[]=
{
0.001, // count = 0

0.031, // count = 1
0.044, // count = 2
0.054, // count = 3

0.062, // count = 4
0.069, // count = 5

KFLOP User Manual 2016

335 | P a g e

0.074, // count = 6

0.079 // count = 7
};

float V240=0.970;

int CorrectAnalog(float v)
{

 int r;
 float v2=2.0f*v;
 // compare with half way points to determine closest count
 if (v2 < V[1]+V[0]) return 0;

 if (v2 < V[2]+V[1]) return 1;
 if (v2 < V[3]+V[2]) return 2;
 if (v2 < V[4]+V[3]) return 3;

 if (v2 < V[5]+V[4]) return 4;
 if (v2 < V[6]+V[5]) return 5;
 if (v2 < V[7]+V[6]) return 6;

 // must be 7 or higher do linear interpolation

 r = (int)(7.5 + (v-V[7])/(V240-V[7])*(240.0f-7.0f));

 if (r>255) r=255;
 return r;
}

KFLOP User Manual 2016

336 | P a g e

KStep Basics Tutorial

Introduction

KSTEP is an add-on stepper driver for KFLOP and it is perhaps the easiest way available to start

controlling stepper motors.

This guide will help you with the most basic KSTEP setup so that by the end of these instructions

you will be able to control stepper motors using the KMotion setup/configuration screens, C-Code

and G-Code. This guide is not comprehensive, however, and you should spend time reading the

help pages for more in-depth information:

1. Main manuals page: http://dynomotion.com/Help/index.htm
2. KFLOP Connectors: http://dynomotion.com/Help/SchematicsKFLOP/ConnectorsKFLOP.htm
3. KSTEP Connectors: http://dynomotion.com/Help/SchematicsKStep/ConnectorsKStep.htm
4. KSTEP Use and Settings: http://dynomotion.com/Help/SchematicsKStep/UsingKStep.htm
5. KSTEP Block Diagram: http://dynomotion.com/Help/BlockDiagramKStep.htm
6. KSTEP Specifications: http://dynomotion.com/Help/SpecificationKStep.htm
7. Yahoo Groups Forum (research and ask questions here):

https://groups.yahoo.com/neo/groups/DynoMotion/info
8. CNC Forum (research and ask questions for CNC-specific applications here):

http://www.cnczone.com/forums/dynomotion-kflop-kanalog/

KSTEP Tutorial Table of Contents:

1. Basic Software Setup
2. Basic Hardware Setup

A. Providing +5V Board Power
B. Checking Firmware Version
C. Voltage Clamping
D. Power Supply input
E. Current Settings
F. Basic Motor Wiring

3. Driving Your Steppers
A. Enabling Output
B. Setting Axis/Channel Parameters and Running an Initialization C Program (Init)
C. The Four Requirements for an Init C Program
D. Use KMotionCNC to Jog Your Motors

http://www.dynomotion.com/Help/index.htm
http://www.dynomotion.com/Help/SchematicsKFLOP/ConnectorsKFLOP.htm
http://www.dynomotion.com/Help/SchematicsKStep/ConnectorsKStep.htm
http://www.dynomotion.com/Help/SchematicsKStep/UsingKStep.htm
http://www.dynomotion.com/Help/BlockDiagramKStep.htm
http://www.dynomotion.com/Help/SpecificationKStep.htm
https://groups.yahoo.com/neo/groups/DynoMotion/info
http://www.cnczone.com/forums/dynomotion-kflop-kanalog/
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/KSTEP_Basics_Tutorial.html%231
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/KSTEP_Basics_Tutorial.html%232
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/KSTEP_Basics_Tutorial.html%232a
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/KSTEP_Basics_Tutorial.html%232b
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/KSTEP_Basics_Tutorial.html%232c
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/KSTEP_Basics_Tutorial.html%232d
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/KSTEP_Basics_Tutorial.html%232e
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/KSTEP_Basics_Tutorial.html%232f
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/KSTEP_Basics_Tutorial.html%233
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/KSTEP_Basics_Tutorial.html%233a
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/KSTEP_Basics_Tutorial.html%233b
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/KSTEP_Basics_Tutorial.html%233c
file:///C:/Documents%20and%20Settings/sfzeller/My%20Documents/My%20Docs/clients/dynomotion/Help/KSTEP_Basics_Tutorial.html%233d

KFLOP User Manual 2016

337 | P a g e

What you need:

1. KFLOP/KSTEP or KFLOP/2xKSTEP combo with provided hardware
2. Dedicated 12V-48V Motor Power Supply to be wired into KSTEP as described below.

Optional +5V power supply.
3. Stepper Motors
4. USB Cable (included with every KFLOP and KFLOP combo order)
5. Ohm Meter (or multi-meter)
6. General tools for electronics (wire cutters/strippers, small screwdrivers, etc.)

1. Software Setup

Start by ensuring you have the latest KMotion software installed on your computer. Download and

install the latest KMotion software from This Software Download Page. Ensure the software installs

and starts normally. If the software does not install properly, search the Yahoo or CNC Zone forums

for help on common installation issues such as temporarily disabling antivirus software installation

preventions, or enabling Windows unsigned software installations.

Note: Every screen in KMotion has a 'Help' button that will bring up a Help page that is focused on

that particular screen.

2. Hardware Setup

2A. Providing +5V Board Power

In a static-free environment, remove your KFLOP and KSTEP from the packaging and connect the

two as shown here. The first step to powering up KFLOP is to determine how to provide the +5V

used to power the boards. Both KFLOP and KSTEP require +5V for operation and there are a

number of ways to provide it.

Note: Once +5V is supplied to the boards, it is available at every +5V terminal. Therefore do not

supply +5V by more than one way or you will damage the boards and potentially your power

supplies. The only exception to this is if KFLOP and KSTEP are isolated by removing jumpers on

KSTEP JP34 and JP35. With this isolation, +5V must be supplied to both KFLOP and KSTEP as

described below.

With jumpers installed on KSTEP's JP34 and JP35, the +5V and GND signals will be shared

between both boards and only needs to be supplied in one way. The possibilities are:

1. On KFLOP: Through the USB cable plugged into KFLOP. The jumper on KFLOP's J3 must
be installed for power to be received through the USB cable and the jumpers on KSTEP's
JP34 and JP35 must be installed for KSTEP to receive the +5V signal. If board power is
supplied this way, ensure +5V is not provided through KFLOP's JR1, KSTEP's JR1, or

http://dynomotion.com/Software/Download.html
https://groups.yahoo.com/neo/groups/DynoMotion/info
http://www.cnczone.com/forums/dynomotion-kflop-kanalog/
http://dynomotion.com/faq.html#Driver
http://www.dynomotion.com/Help/images/KSTEP_KFLOP_perspective1_800.jpg

KFLOP User Manual 2016

338 | P a g e

KSTEP's J6 connectors or the board and power supply could be damaged. Note that the
USB cable should be of high quality and must meet USB 2.0 specifications for plug shell-to-
shell resistance of <0.6 Ohms. When measuring resistance, remember to subtract the
resistance introduced by the measuring device by first measuring the probe-to-probe contact
resistance.

2. On KFLOP: +5V and GND through KFLOP's JR1 Molex® connector. The jumper on
KFLOP's J3 must be removed to avoid receiving +5V from the USB cable in this case. The
jumpers on KSTEP's JP34 and JP35 must be installed for KSTEP to receive the +5V signal -
in this case do not provide +5V on KSTEP's JR1 or J6 connectors. Note that in this case, the
+12V provided through the Molex connector is not used internally, but is routed to pins on the
JP4, JP6, and JP7 connectors for convenience.

3. On KSTEP: +5V and GND through KSTEP's JR1 Molex connector. The jumpers on KFLOP's
J3 must be removed and the jumpers on KSTEP's JP34 and JP35 must be installed in this
case in order for KFLOP to receive +5V power. Also note that if KSTEP's JR1 Molex
connector is used, it is likely that +12V is being provided through this connector and therefore
all VB connections on KSTEP will have 12V applied to them, and which would then be used
for motor power. Therefore, do not provide motor power through KSTEP's J1 terminal.

4. On KSTEP: +5V and GND through KSTEP's J6 terminal block. The jumpers on KFLOP's J3
must be removed and the jumpers on KSTEP's JP34 and JP35 must be installed in this case
in order for KFLOP to receive +5V power.

In the case where you want KFLOP and KSTEP to have +5V supplied independently. Remove

jumpers on KSTEP's JP34 and JP35 and then supply power through 1 or 2 and 3 or 4 above. Note

that, in this case, the +5V power supplies should be different power supplies or the purpose of

supplying board power independently is defeated.

Once the board power delivery method is determined, the boards are ready to power up. Provide

+5V via your chosen method to power up the boards.

On power up, KFLOP LEDs will illuminate as will the "+5V" LED on KSTEP indicating that both

boards are receiving a +5V signal. Once motor supply power is fed into KSTEP as described below,

the "MOT PWR" motor supply LED on KSTEP will illuminate.

KFLOP User Manual 2016

339 | P a g e

2B. Check the firmware version and update if necessary

Next, ensure the software version on KFLOP is up-to-date. In the KMotion software, open the

Console screen and type the command "Version" into one of the command lines (if one of the

command lines already contains the command there is no need to type it). Press the "Send" button

next to the command to send the Version Command to KFLOP to display the version of onboard

firmware. If the firmware version does not match the version of KMotion you downloaded and are

running (Help>About KMotion...), open the Config screen and press the "New Version" button. The

pop-up window will automatically locate the necessary file for the sofware update, click "Open" and

confirm the next pop-up. Allow a few seconds for the software to finish updating and after it is

finished, cycle power to KFLOP.

2C. Motor Power Supply Setup - Voltage Clamping

Voltage spikes due to Regenerative Braking and other sources can potentially raise the supply

voltage up to a level that can damage electronics including KSTEP or the power supply. Voltage

Spikes may also cause a power supply to trip a fault and shut down. KSTEP's Voltage clamp can be

used to avoid these problems.

Motor power supply may be supplied through KSTEP's J1 terminal block OR KSTEP's JR1 Molex

connector, but not both at the same time; and it is crucial that voltage clamps on KSTEP are set

according to the motor power supply voltage level. KSTEP can handle motor power supplies from

12V to 48V and voltage clamp settings are designed to be 1V higher than common power supply

voltages. It is critical that you clamp voltage on KSTEP at a value HIGHER than the motor power

supply.

See this image for voltage clamp jumper location: KSTEP Connector Pinouts

Common power supply voltages are 12V, 24V, 36V, and 48v. KSTEP has a voltage clamping

feature that can be set to 13V, 25V, 37V, or 49V volts. So whatever is the value of your motor power

supply voltage, set the clamp to the next value higher than your motor power supply. Setting the

voltage clamp to a value lower than the power supply will draw excessive current and is likely to

cause damage to your KSTEP and/or the power supply.

Pin jumpers are provided with every KSTEP purchase. These are small plastic rectangular pieces

with a metal coupling inside that connects two pins together when applied. You will use these to set

the voltage clamp. Essentially, every jumper added to A, B, or C of the voltage clamping pins will

reduce the voltage clamping by 12V. So, with no jumpers, voltage is clamped at 49V. With a jumper

on A, voltage is clamped at 37V. With jumpers on A and B, voltage is clamped at 25V. With jumpers

applied to A, B, and C, voltage is clamped at 13V (the lowest setting). Make sure voltage is clamped

HIGHER than your power supply voltage or you will damage KSTEP.

http://www.dynomotion.com/Help/SchematicsKStep/KSTEPConnectors.png

KFLOP User Manual 2016

340 | P a g e

Motor
Power
Supply

Voltages

Required
Number of
Jumpers

Jumper
Location

Clamping
Level

37V to 48V
None -

49V

25V to 36V
1 A

37V

13V to 24V
2 A+B

25V

12V Only
3 A+B+C

13V

2D. Motor Power Supply Setup - Connecting Motor Power to KSTEP

There are two ways to feed motor power into KSTEP, and they are incompatible with each other

such that you must choose one or the other and not both or you will damage your power supplies

and KSTEP.

The first and perhaps easiest way to connect motor power is through the Molex connector at

position JR1 on KSTEP. Many power supplies have this standard connector and it plugs easily into

KSTEP to provide motor power. Caution: Note that if JR1 is plugged into a power supply this way,

all VB connections on the board will have that voltage active on them. Also, it is likely that +5V

signals are provided by a power supply with this connector and so you need to make sure no other

5V signals are being provided as described in the Board Power section of this tutorial before

plugging power into the board in this way.

The second way to supply motor power is through the screw terminals at position J1 on KSTEP. For

applications requiring less than 10 Amps, simply screw in power supply leads into one of the

respective VBB+ and GND terminals on J1. Do not supply power through JR1 if you supply power

on J1 or you will damage KSTEP and your power supply.

Note: for applications requiring more than 10 Amps, both of the VBB and GND connections on J1

should be used.

Power Supply Voltage Selection is a fairly complex subject but as a rule-of-thumb the supply should

be 10~15 times higher than the rated voltage of the steppers. Sometimes the voltage of the Stepper

motor is not stated, in which case it can be determined by using Ohm's law (V = I x R) and the

Current and Resistance specifications. For example, for a 3 Amp motor with a resistance of 0.6

ohms the motor would require 1.8V. A power supply of 18V to 27V might be used.

KFLOP User Manual 2016

341 | P a g e

2E. Motor Current Settings

The current supplied to your motors must be configured to provide the correct level and KSTEP

provides a physical method of doing this through the installation of jumpers on current setting pins

on KSTEP.

Stepper motor current is generally specified on a per coil basis such as 670mA, or 0.67A, per coil. It

is important to know what is the current per coil for your motors so you can set the correct current

jumpers on KSTEP. The current setting pins are labeled on the board as "CUR MOTOR#" where #

is the axis number from 0-3. KSTEP has a High, Medium, and Low current jumper for each motor

coil (2 coils per axis). Set jumpers on the H (high), M (medium), and L (low) pins such that the value

is the next level lower than your motor specifications. For example, if your motor has a per coil

current rating of 670 mA, you will not set any jumpers for both coils - corresponding to a current

setting of 0.63A. For a motor with a 3.5A current per coil specification you would set jumpers on H

for both coils corresponding to a current setting of 3.13A.

Use the table below to determine how to set your jumpers according to the motor current ratings.

Motor Current

per Coil

Rating

(Amps)

H M L

Current

Setting

(Amps)

0.63 to 1.24 Removed Removed Removed 0.63

1.25 to 1.87 Removed Removed Installed 1.25

1.88 to 2.49 Removed Installed Removed 1.88

2.50 to 3.13 Removed Installed Installed 2.50

3.13 to 3.74 Installed Removed Removed 3.13

3.75 to 4.37 Installed Removed Installed 3.75

4.38 to 4.99 Installed Installed Removed 4.38

5.00+ Installed Installed Installed 5.00

2F. Wiring Motors to KSTEP

Stepper motors come in a variety of wiring configurations from 4 to 8 wires. KSTEP only needs 4 of

these to drive a stepper since KSTEP does not require the center tap wires. KSTEP requires only

the full bridge coils to drive the stepper and you can ignore center tap wires if your motor has them.

KFLOP User Manual 2016

342 | P a g e

For 8-wire steppers, you have a choice about how to wire them, in series or in parallel and would

need to choose the power supply to fit the wiring method.

There are many resources on the web that describes Stepper motor wiring so we will not address

the specifics here, but essentially you need only to wire in the coils across the "+" and "-" of the

motor power output of KSTEP.

Warning: you can damage KSTEP if you wire the motors incorrectly. Make sure to measure the

resistance between coils and that you have identified your coils properly before wiring into KSTEP.

It is vitally important that each coil is wired into KSTEP properly.

Motors can be wired into connectors J2 through J5 on KSTEP according to the following diagram:

In addition, take note of the following default mapping as it is useful to know for the next steps (this

mapping can be altered in software):

1. Axis Channel #0: Output Channel = 8 -> Motor Wiring J2
2. Axis Channel #1: Output Channel = 9 -> Motor Wiring J3
3. Axis Channel #2: Output Channel = 10 -> Motor Wiring J4
4. Axis Channel #3: Output Channel = 11 -> Motor Wiring J5

3. Driving Your Steppers

3A. Enabling Output

Once you have the voltage clamping, current limits and power supply set and wired, you are ready

to begin moving your motors.

KFLOP User Manual 2016

343 | P a g e

To do this, while the KSTEP LED D1 MOT PWR is illuminated, open KMotion.exe, select the Digital

IO Screen, Set IO bit 45 as Output (enable the checkbox to the left of bit 45), Set IO 45 State to On

(enable the checkbox to the right of bit 45). Verify that the KSTEP D3 ENABLE LED illuminates and

that your motors hold position against a torque - in other words, you cannot move the motor shaft

with your fingers. In this state, the motors will become warm and may become too hot to

touch.

As a side note, this action can also be performed by entering the following commands in a C

program or sending the commands using the Console screen:

SetBitDirection(45,1); //This sets the Enable Signal as Output

SetBit(45); //This Enables the amplifiers

Or by an external signal wired to KSTEP's J6 terminal.

KFLOP User Manual 2016

344 | P a g e

3B. Setting Axis/Channel Parameters and Running an Initialization C Program (Init)

The goal in this section is to set the parameters that will ultimately go into the Init program. To do

this, you will use two screens in KMotion: "Config & Flash" and "Step Response." If you plan to use

an encoder for Closed-Loop Stepper Control, you would also use the "IIR Filters" screen as well, but

it is not used for open-loop stepper control as described in this tutorial. You can view an explanation

of how parameters are passed to/from KFLOP, loaded, saved and copied to C Programs here:

http://dynomotion.com/Help/FlashHelp/Parameters/index.html.

1. In KMotion, Open the "Config & Flash" Screen and select the "Channel" at the top of the
screen for the axis you plan to use (0-3).

2. Since it is best to start with a known default, click on "Load Channel" and choose the
corresponding "KStepAxis#.mot" file where # matches the chosen Channel. This will load the
last saved settings in that file, which are set to default values that should work for a majority
of stepper motors. In addition, loading this file puts the Channel into "Step Dir" Axis output
mode, which is required for KSTEP.

3. After loading the Channel, open the "Step Response Screen" screen.

4. Notice at the top that the Channel number matches the Channel number on the Configuration
screen. Note: changing the Channel on either the Configuration or the Step Response screen
will change the Channel in the other screen.

5. The purpose of the Step Response screen in this tutorial is simply to help you set the
Velocity, Acceleration and Jerk values to achieve smooth motor performance. These values
are on the Step Response screen under "motion profile" labeled V, A and J, respectively.

6. Click on the 'Move' button. If Channel "0" is chosen, the motor wired to the J2 terminal should
move a few degrees one direction and then back to the original position and, after a few
seconds, a plot will appear in the Step Response Screen showing the Commanded Step
movement. You can increase the step time (up to a maximum of 3.5 seconds) and size in this
screen to get a larger movement.

7. Now you can change the V, A, and J values until you are satisfied that the motor is moving
smoothly - typically keeping A to be an order of magnitude or more than V, and J to be an
order of magnitude more than A. If the motor stalls, seems jerky or misses steps, you can
decrease the parameters until motion is smooth. In fact, it is recommended that you increase
the parameters until the motor stalls, then decrease the parameters by 30-50%. Note: motors
under load will perform differently so you may need to revisit this step once your motors are
carrying weight. In that case, take precautions to ensure the system is not damaged if the
motor experiences a stall. Click here for a discussion on choosing values for the Velocity,
Acceleration and Jerk parameters.

The V, A, and J parameters are in terms of microsteps since KSTEP performs all movements
using microstepping, which is 16 microsteps for every step. Therefore a Velocity value of
4,000 means 4,000 microsteps per second. You can relate this to your motor velocity by this

http://www.dynomotion.com/Help/FlashHelp/Parameters/index.html
https://groups.yahoo.com/neo/groups/DynoMotion/conversations/messages/9252

KFLOP User Manual 2016

345 | P a g e

equation:

Motor RPM = 60 * V / (16 * Step/Rev)

where V is the Velocity value on the Step Response screen and Step/Rev is the steps per
revolution specification for your motor. For a motor with 200 steps/rev, a value of 4,000 for V
equates to 75 RPM. Take note of the direction your motor spins and if you want it to spin in
the opposite direction you can change the 'gain' value in the Configuration window to '-1'.

8. As the parameters are changed, they are automatically available to the Configuration window
so they may be saved, downloaded to KFLOP, copied to the clipboard or exported to an
open C program. Furthermore, the parameters for each axis are persistent in that you can
select a new Channel and the parameters for the previous Channel will not be lost unless the
KMotion program is closed. Because of this, when you copy to the clipboard or export to an
open C program, parameters for all axes are copied or exported to the C program (as long as
the axis exists in the C program as shown below).

KFLOP User Manual 2016

346 | P a g e

KFLOP User Manual 2016

347 | P a g e

Once the parameters are set, you can save them to a file, export them to a C program or download

them to KFLOP. To do this:

1. Save to a file: On the Config & Flash screen, click the Save Channel button and choose a
file location and click Save. You can open this file later to reload those parameters.

2. Download to KFLOP: On the Config & Flash screen, click the Download Channel button.
This will load KFLOP with the axis parameters.

3. Copy to a C Program: For this you must have a C Program open with the initialization
parameters within int main(). An example C Program is located in the \KMotionXXX\C
Programs\KStep folder and a good program to choose is the InitKStep3Axis.c, which has
parameters for, and enables, 3 axes. Then simply click the 'Export All to Open C Program'
and all available channels will be merged into the open C program if channel assignments
are present there. This would then become an "Init" file.

4. Copy to Clipboard: This button simply copies the parameters to Window's Clipboard so you
may paste into any other text window that you wish.

KFLOP User Manual 2016

348 | P a g e

Here are the parameters for a single axis:

 ch0->InputMode=NO_INPUT_MODE;

 ch0->OutputMode=STEP_DIR_MODE;

 ch0->Vel=115000;

 ch0->Accel=50000;

 ch0->Jerk=100000;

 ch0->P=0;

 ch0->I=0.01;

 ch0->D=0;

 ch0->FFAccel=0;

 ch0->FFVel=0;

 ch0->MaxI=200;

 ch0->MaxErr=1e+006;

 ch0->MaxOutput=200;

 ch0->DeadBandGain=1;

 ch0->DeadBandRange=0;

 ch0->InputChan0=0;

 ch0->InputChan1=0;

 ch0->OutputChan0=8;

 ch0->OutputChan1=0;

 ch0->MasterAxis=-1;

 ch0->LimitSwitchOptions=0x100;

 ch0->LimitSwitchNegBit=0;

 ch0->LimitSwitchPosBit=0;

 ch0->SoftLimitPos=1e+030;

KFLOP User Manual 2016

349 | P a g e

 ch0->SoftLimitNeg=-1e+030;

 ch0->InputGain0=1;

 ch0->InputGain1=1;

 ch0->InputOffset0=0;

 ch0->InputOffset1=0;

 ch0->OutputGain=1;

 ch0->OutputOffset=0;

 ch0->SlaveGain=1;

 ch0->BacklashMode=BACKLASH_OFF;

 ch0->BacklashAmount=320;

 ch0->BacklashRate=320;

 ch0->invDistPerCycle=1;

 ch0->Lead=0;

 ch0->MaxFollowingError=1000000000;

 ch0->StepperAmplitude=20;

 ch0->iir[0].B0=1;

 ch0->iir[0].B1=0;

 ch0->iir[0].B2=0;

 ch0->iir[0].A1=0;

 ch0->iir[0].A2=0;

 ch0->iir[1].B0=1;

 ch0->iir[1].B1=0;

 ch0->iir[1].B2=0;

 ch0->iir[1].A1=0;

 ch0->iir[1].A2=0;

KFLOP User Manual 2016

350 | P a g e

 ch0->iir[2].B0=0.000769;

 ch0->iir[2].B1=0.001538;

 ch0->iir[2].B2=0.000769;

 ch0->iir[2].A1=1.92076;

 ch0->iir[2].A2=-0.923833;

Notice that the "ch0->" indicates it is setting parameters for Axis #0. Each axis will have all of these

parameters and these are what are exported to the C program or copied to the clipboard when

those options are selected in the Configuration screen.

Below is the example that shows 3 Axes being configured, enabled, and referenced into a

coordinate system. This constitutes a full Init file to initialize a 3-axis system as discussed in the

next section:

#include "KMotionDef.h"

// Defines axis 0, 1, 2 as simple step dir outputs

// enables them

// sets them as an xyz coordinate system for GCode

int main()

{

 ch0->InputMode=ENCODER_MODE;

 ch0->OutputMode=STEP_DIR_MODE;

 ch0->Vel=40000.000000;

 ch0->Accel=400000.000000;

 ch0->Jerk=4000000.000000;

 ch0->P=0.000000;

 ch0->I=0.010000;

KFLOP User Manual 2016

351 | P a g e

 ch0->D=0.000000;

 ch0->FFAccel=0.000000;

 ch0->FFVel=0.000000;

 ch0->MaxI=200.000000;

 ch0->MaxErr=1000000.000000;

 ch0->MaxOutput=200.000000;

 ch0->DeadBandGain=1.000000;

 ch0->DeadBandRange=0.000000;

 ch0->InputChan0=0;

 ch0->InputChan1=0;

 ch0->OutputChan0=0;

 ch0->OutputChan1=0;

 ch0->LimitSwitchOptions=0x0;

 ch0->InputGain0=1.000000;

 ch0->InputGain1=1.000000;

 ch0->InputOffset0=0.000000;

 ch0->InputOffset1=0.000000;

 ch0->invDistPerCycle=1.000000;

 ch0->Lead=0.000000;

 ch0->MaxFollowingError=1000000000.000000;

 ch0->StepperAmplitude=20.000000;

 ch0->iir[0].B0=1.000000;

 ch0->iir[0].B1=0.000000;

 ch0->iir[0].B2=0.000000;

 ch0->iir[0].A1=0.000000;

 ch0->iir[0].A2=0.000000;

KFLOP User Manual 2016

352 | P a g e

 ch0->iir[1].B0=1.000000;

 ch0->iir[1].B1=0.000000;

 ch0->iir[1].B2=0.000000;

 ch0->iir[1].A1=0.000000;

 ch0->iir[1].A2=0.000000;

 ch0->iir[2].B0=0.000769;

 ch0->iir[2].B1=0.001538;

 ch0->iir[2].B2=0.000769;

 ch0->iir[2].A1=1.920810;

 ch0->iir[2].A2=-0.923885;

 EnableAxisDest(0,0);

 ch1->InputMode=ENCODER_MODE;

 ch1->OutputMode=STEP_DIR_MODE;

 ch1->Vel=40000.000000;

 ch1->Accel=400000.000000;

 ch1->Jerk=4000000.000000;

 ch1->P=0.000000;

 ch1->I=0.010000;

 ch1->D=0.000000;

 ch1->FFAccel=0.000000;

 ch1->FFVel=0.000000;

 ch1->MaxI=200.000000;

 ch1->MaxErr=1000000.000000;

 ch1->MaxOutput=200.000000;

KFLOP User Manual 2016

353 | P a g e

 ch1->DeadBandGain=1.000000;

 ch1->DeadBandRange=0.000000;

 ch1->InputChan0=1;

 ch1->InputChan1=0;

 ch1->OutputChan0=1;

 ch1->OutputChan1=0;

 ch1->LimitSwitchOptions=0x0;

 ch1->InputGain0=1.000000;

 ch1->InputGain1=1.000000;

 ch1->InputOffset0=0.000000;

 ch1->InputOffset1=0.000000;

 ch1->invDistPerCycle=1.000000;

 ch1->Lead=0.000000;

 ch1->MaxFollowingError=1000000000.000000;

 ch1->StepperAmplitude=20.000000;

 ch1->iir[0].B0=1.000000;

 ch1->iir[0].B1=0.000000;

 ch1->iir[0].B2=0.000000;

 ch1->iir[0].A1=0.000000;

 ch1->iir[0].A2=0.000000;

 ch1->iir[1].B0=1.000000;

 ch1->iir[1].B1=0.000000;

 ch1->iir[1].B2=0.000000;

 ch1->iir[1].A1=0.000000;

 ch1->iir[1].A2=0.000000;

KFLOP User Manual 2016

354 | P a g e

 ch1->iir[2].B0=0.000769;

 ch1->iir[2].B1=0.001538;

 ch1->iir[2].B2=0.000769;

 ch1->iir[2].A1=1.920810;

 ch1->iir[2].A2=-0.923885;

 EnableAxisDest(1,0);

 ch2->InputMode=ENCODER_MODE;

 ch2->OutputMode=STEP_DIR_MODE;

 ch2->Vel=40000.000000;

 ch2->Accel=400000.000000;

 ch2->Jerk=4000000.000000;

 ch2->P=0.000000;

 ch2->I=0.010000;

 ch2->D=0.000000;

 ch2->FFAccel=0.000000;

 ch2->FFVel=0.000000;

 ch2->MaxI=200.000000;

 ch2->MaxErr=1000000.000000;

 ch2->MaxOutput=200.000000;

 ch2->DeadBandGain=1.000000;

 ch2->DeadBandRange=0.000000;

 ch2->InputChan0=2;

 ch2->InputChan1=0;

 ch2->OutputChan0=2;

 ch2->OutputChan1=0;

KFLOP User Manual 2016

355 | P a g e

 ch2->LimitSwitchOptions=0x0;

 ch2->InputGain0=1.000000;

 ch2->InputGain1=1.000000;

 ch2->InputOffset0=0.000000;

 ch2->InputOffset1=0.000000;

 ch2->invDistPerCycle=1.000000;

 ch2->Lead=0.000000;

 ch2->MaxFollowingError=1000000000.000000;

 ch2->StepperAmplitude=20.000000;

 ch2->iir[0].B0=1.000000;

 ch2->iir[0].B1=0.000000;

 ch2->iir[0].B2=0.000000;

 ch2->iir[0].A1=0.000000;

 ch2->iir[0].A2=0.000000;

 ch2->iir[1].B0=1.000000;

 ch2->iir[1].B1=0.000000;

 ch2->iir[1].B2=0.000000;

 ch2->iir[1].A1=0.000000;

 ch2->iir[1].A2=0.000000;

 ch2->iir[2].B0=0.000769;

 ch2->iir[2].B1=0.001538;

 ch2->iir[2].B2=0.000769;

 ch2->iir[2].A1=1.920810;

 ch2->iir[2].A2=-0.923885;

KFLOP User Manual 2016

356 | P a g e

 EnableAxisDest(2,0);

 DefineCoordSystem(0,1,2,-1);

 return 0;

}

You can find more information on how to quickly import or export settings between the KMotion

Screens and a C Program here.

3C. The Four Requirements for an Init C Program

At this point, you are ready to begin writing a C program to move your motors or simply use it as an

Initilization file that allows KMotionCNC to control them. An initilization C program, which is also

referred to simply as an Init file, will have four operations (all of which the InitKStep3Axis.c and

InitKStep4Axis.c programs already have):

1. The following commands:

KStepPresent=True; //which tells KFLOP that KSTEP is connected

FPGA(KAN_TRIG_REG)=4; //Mux PWM0 to JP7 Pin5 IO 44 for KSTEP

FPGA(STEP_PULSE_LENGTH_ADD) = 63 + 0x80; //which sets polarity and pulse

length to 4us

2. Axis settings such as the velocity, acceleration and jerk parameters as described in the
previous section along with the following command for each axis:

EnableAxisDest(#,0); //where # is the axis/channel number

3. Commands to enable all axes:

SetBitDirection(45,1); //This sets the Enable Signal as Output

SetBit(45); //This Enables the amplifiers

4. And then a command that defines which axes are in the coordinate system:

http://www.dynomotion.com/Help/ConfigurationScreen/ConfigurationScreen.htm#Utilities

KFLOP User Manual 2016

357 | P a g e

DefineCoordSystem(0,1,2,-1);

5. This command defines a coordinate system with 3 axes: 0, 1, 2 and the 4th axis is disabled
by entering a '-1', otherwise a '3' would be used to include the 4th axis.

You can add more C code into this initialization file to control your system, or use Dynomotion's

KMotionCNC program to run G-Code.

Since adding C code is more involved, that will be handled in a different tutorial, but here is an

example of a simple infinite loop to move one motor that can be added into an init file:

for(;;) //loop forever

{

MoveRelAtVel(0,500,100); //relative move Axis 0 for 500 steps at 100

steps/second

while (!CheckDone(0)) ; //ensure the move of Axis 0 is complete before

moving on

MoveRelAtVel(0,-500,100); //relative move Axis 0 for 500 steps in opposite

// direction at 100 steps/second

while (!CheckDone(0)) ; //ensure the move of Axis 0 is complete before

moving on

} // close loop (loop still loops forever)

Then you only need to Save, Compile, Download and Run the program to have KFLOP execute the

program. You can do this in steps on the C Program screen or all in one button click with the Save-

Compile-Download-Run button on the top. To stop the program, press the "Stop" button on the main

KMotion menu.

The next steps cover how to use KMotionCNC for basic movements.

3D. Use KMotionCNC to jog your motors

After running an Init file such as InitKStep3Axis.c for initialization, you are ready to move your

motors by using KMotionCNC. Try moving the motors by first clicking on the jog buttons (buttons

with green arrows at left). If everything is initialized properly the motors should move when the

respective jog button is clicked. These jog buttons are mapped to the axes by the

"DefineCoordSystem(0,1,2,-1);" command discussed above. In this example, the X-axis is mapped

to Axis #0, Y-axis is mapped to Axis #1, Z-axis is mapped to Axis #2 and the A-axis is not used. If

pressing the jog buttons move the motors, then you are ready to begin running G-Code. To do this,

KFLOP User Manual 2016

358 | P a g e

within KMotionCNC choose "Open" and choose a G-Code program from the GCode Programs

folder. If everything has been initialized correctly, the motors will move when the Start button is

pressed to start the G-Code.

Note: An initialization C program such as the InitKStep3Axis.c must be run before operating with

KMotionCNC will work. This initialization C program can be called with the 'Init' button in

KMotionCNC once programmed to do so by setting the file location and Thread number for the INIT

button within the 'Tool Setup' Screen on the 'User Buttons' tab in KMotionCNC:

The GUI of KMotionCNC can be configured based on how many axes you are using by changing

the option for "Main Dialog Face" on the 'Tool/Setup Files' tab within the 'Tool Setup' screen. The

screenshot below is for a 3-axis setup as you can tell from the display of only X, Y, and Z

coordinates.

KFLOP User Manual 2016

359 | P a g e

Note that the motors will not yet be moving accurately until the full parameters are set within

KMotionCNC. To do this, you will set the Counts per inch (Cnts/inch) for each axis on the Trajectory

Planner tab within the Tool Setup screen of KMotionCNC. You should also set the axis velocities

and accelerations, and jog velocities and accelerations for your system on this tab.

KFLOP User Manual 2016

360 | P a g e

You can measure the distance each axis moves for a given number of steps and then use this

Cnts/inch value as a conversion factor so KMotionCNC knows how many steps to move for a given

distance.

For greater accuracy, you can create a Geocorrection File.

For a detailed discussion on Step and Direction Outputs, see this page.

Once you understand everything in this tutorial, you will be ready to dive into the details of your
KFLOP/KSTEP. See our manual for more information.

KSTEP Tutorial Rev. 1.0

http://www.dynomotion.com/Help/KMotionCNC/GeoCorrection.htm
http://www.dynomotion.com/Help/StepAndDirection/StepAndDir.htm
http://www.dynomotion.com/Help/index.htm

KFLOP User Manual 2016

361 | P a g e

Kanalog 1.0 Hardware

Function Parameter Specification

Analog DAC Outputs
ADC Inputs

(8) +/- 10V @ 10ma, recommended load
>2Kohm
12 bit - update rate 11.1KHz all 8
channels
(8) +/- 10V 100Kohm input Impedance
12 bit - update rate 11.1KHz all 8
channels

Optos Opto Isolated Outputs
Opto Isolated Inputs

(8) Max differential voltage 80V 25ma
(8) 3-24V input, internal 10KOhm series
resistor

Differential Differential Input
Receivers

(16) ANSI TIA/EIA-422-B, ANSI TIA/EIA-
423-B
+/-7V common mode range, 200mv
sensitivity
Internal 470ohm termination

Relay Drivers N channel FET Switches (8) 24V @ 1 Amp max
Open Drain switches to ground

Digital I/O GPIO - LVTTL (8) Outputs Source/Sink 12ma
(8) Inputs LVTTL, 3.3V 1µa max

±15V On-board DC-DC
Generator

2 Watts (70ma each supply)

RS232 Driver/Receiver EIA/TIA-232-F

Terminal
Strips

Screw Terminals 112 Pluggable Screw Terminals
(7) x 16 pin
5mm pitch

Watchdog Charge Pump DSP communication enables
(1) Relay Driver, FET Switch 24V @ 1A

Logic Supply Voltage
Typical Current

+5V ±10%
0.5 A

Environment Operating Temperature
Storage Temperature
Humidity

0-40º C
0-40º C
20-90% Relative Humidity, non-
condensing

Dimensions Length
Width
Height

8.5 inches (216mm)
7.0 inches (178 mm)
0.75inches (19 mm)

Green RoHS Compliant

KFLOP User Manual 2016

362 | P a g e

Kanalog - Connector Pinouts

JP1/JP2 Differential Inputs

16 Differential Receiver Inputs are provided. Kanalog converts the differential signals to signal
ended LVTTL signals and passes them through to existing KFlop I/O pins.

JP1 converts 8 of the signals and connects them to Kflop I/O bits 0-7 (Kflop JP7 Pins 7-14) which
are Kflop's 4 encoder A/B input channels.

KFLOP User Manual 2016

363 | P a g e

JP2 converts 8 of the signals and connects them to Kflop I/O bits 36-43 (Kflop JP5 Pins 1-8) which
are General Purpose I/O pins.

Typically up to 4 encoder's A/B signals are connected to JP1 and any Z index inputs are connected
to JP2

These differential inputs are moderately damped with an internal 470ohm resistor connected across
the + to - inputs. If additional termination is required an external resistor may be connected.

JP6 - Analog Inputs +/- 10V

(8) +/- 10V analog inputs are provided. These are mapped and referenced as ADC inputs 0-7 for
Kflop configuration purposes. Input impedance is approximately 100K ohms.

(8) ground terminals are provided. Kanalog contains a single solid ground plane so these grounds
may be used as any digital or analog ground connection.

KFLOP User Manual 2016

364 | P a g e

JP8 - FET Switch Outputs (relay drivers) - watchdog - power outputs

(8) 24V @ 1Amp relay FET Switch Outputs are available on Kanalog mapped as Output Bits 152-
159. When activated (checked on or with state "1") the FET Switches make a connection to ground.
Normally a load, such as a relay coil is connected between some appropriate +supply and a Switch
input. Therefore when the Switch makes a connection to ground, the load is energized.

Caution! Inductive loads MUST have a reverse diode connected in parallel with the load to
avoid a high voltage spark when the switch opens. Failure to allow a re-circulating current
path on any inductive coil such as a relay, solenoid, or motor is likely to cause permanent
damage.

One Enable or Watchdog FET Switch Output is also available (24V @ 1Amp). This switch conducts
after Kflop boots, enables the +/-15V generator, and begins communicating with the board. It is
recommended that this switch output is used an one of the conditions to enable main system power
for motors and other devices.

(2) +3.3V outputs are available to power low current (<100ma) external circuitry.

One low current 1.7V bias current is available. See circuit below:

(4) +5V outputs are available to power low current (<100ma) external circuitry such as encoders.
Normally +5V is applied to Kflop JR1 (4 pin white Molex connector) and passes through the ribbon
connector to Kanalog. However it is also possible to feed +5V into the system via these terminals. If
+5V power is fed into both Kflop and Kanalog the exact same +5V supply must be connected to
both.

KFLOP User Manual 2016

365 | P a g e

JP9 - Differential Signals 8-15 to Kflop

The second (8) of the 16 Differential signals pass through to KFlop through this connector. If only
the first 8 differential are used then this connector is not required and the 8 Kflop inputs may be
used for some other purpose.

KFLOP User Manual 2016

366 | P a g e

JP10 - RS232

The JP10 6-pin phone connector provides 3-wire RS232 connectivity. JP10 Pin3 is used for transmit
data from Kanalog. JP10 Pin 4 is used for receive data going into Kanalog. Receive data is
converted to LVTTL and routed to a Kflop I/O bit #44. Data from LVTTL Kflop I/O bit #45 is passed
through the RS232 driver and out the Transmit pin. This phone plug connector is designed to be
compatible with Automation Direct's PLC line using a straight through phone cable.

Note: Currently the RS232 capability of Kanalog is not supported in the KFlop firmware. Contact
Dynomotion for current status if RS232 is required in your application.

JP11 - Analog Ouputs +/- 10V

(8) +/- 10V analog ouputs are provided. These are mapped and referenced as DAC outputs 0-7 for
Kflop configuration purposes. Output impedance is approximately 2K ohms.

(8) ground terminals are provided. Kanalog contains a single solid ground plane so these grounds
may be used as any digital or analog ground connection.

http://www.automationdirect.com/

KFLOP User Manual 2016

367 | P a g e

JP12 - General Purpose Inputs, Outputs, Low level analog in, Supplies

JP12 is a standard 40 pin IDC header connector.

(8) 3.3V LVTTL Inputs are provided (SDIN0 - SDIN7) mapped as Kanalog Input bits #128-135.
Inputs are diode clamped to 3.3V.

Note: To connect 5V signals a 200ohm external series resistor is required.

(8) 3.3V LVTTL Outputs are provided (OUT 0 - OUT_7) mapped as Kanalog Output bits #160-167.

ADC channels 0-3 have internal low voltage inputs exposed as signals IN0-IN3. Instead of driving
the normal terminal inputs with a voltage range of +/- 10V. The INx pins may be driven with low
voltage (0V - 3V) signals with an input impedance of ~10K ohms. This may allow higher resolution
with low voltage signals. Caution should be used as these are low voltage unprotected signal inputs.

+/- 15V from the internal DC-DC generator is available on pins V15 (+15V) and VM15 (-15V). 70ma
is available for external use for each supply.

ENABLE_ALL is the LVTTL equivalent of the SwitchEnableAll FET output if a logic level is desired
instead of the FET SWITCH output.

One additional 24V 1Amp FET switch is available with an exposed gate. Drive signal
FET_MISC_GATE to 3.3v to turn on the FET (SwitchMisc) output.

+3.3V and +5V are available on this connector. +3.3V is available as an output only (regulated
down from the +5V). +5V is common to all other +5V signals and may be used as input or output.

KFLOP User Manual 2016

368 | P a g e

JP13 - Opto Outputs

(8) totaly isolated and independent optically isolated outputs are provided.

Opto output transistors are rated for a max voltage of 80V and will conduct up to 25ma of current.

KFLOP User Manual 2016

369 | P a g e

KFLOP User Manual 2016

370 | P a g e

JP14 - Kflop

This is the main connection between Kflop and Kanalog and should consist of a short 26-pin one-
one ribbon cable.

Analog and digital data passes through this cable in serial form. The first 8 differential signals pass
to the Kflop in parallel form.

None of these signals should be used by the User.

JP15 - Opto Intputs

(8) totally isolated and independent optically isolated inputs are provided.

Input LEDs have a series resistance of 10Kohms and may be driven directly by any voltage from 5-
24V. Max drain of 2.4ma when driven with 24V.

KFLOP User Manual 2016

371 | P a g e

KFLOP User Manual 2016

372 | P a g e

Kanalog Board Layout

KFLOP User Manual 2016

373 | P a g e

KFLOP User Manual 2016

374 | P a g e

Using Kanalog 1.0

Kanalog adds Analog and Digital I/O to Dynomotion's KFLOP motion controller.
Kanalog provides 6 types of various I/O which is enough to completely drive many types of machine
tools.

Standard +/-10V Analog outputs may be used to drive Analog Motor Drives. The Analog outputs are
true 12 bit DACS, not filtered PWMs that have slow response and ripple. All (8) Analog inputs and
(8) Analog outputs are all updated every Servo Sample time of 90us (11 KHz).

Relay Drivers, Opto Inputs, Opto Outputs, Differential Encoder Inputs, LVTTL inputs and outputs
are all included along with 112 screw terminals.

The photo below shows Kanalog with KFlop mounted and two cables that connect the two boards.

Figure 1 - Kanalog + KFLOP

KFLOP User Manual 2016

375 | P a g e

Setting Options

Set options on the KMotion Executive Program for both Kanalog and the required KFlop.

Analog Status

All of the Analog ADC readings and DAC settings can be observed by selecting the Kanalog Tab of
the Analog I/O Screen.

Digital Status

All of the Digital I/O can be observed by selecting the Kanalog Tab of the Digital I/O Screen.

Inputs are all on the left side of the screen and Outputs are on the right. Outputs may be toggled by
clicking on the state.

KFLOP User Manual 2016

376 | P a g e

Example Configuration

The example configuration below shows a typical configuration where an external analog motor
amplifier is to be used with differential encoder feedback and optically isolated limit switches.

Note the areas on the screen circled in red.

The Axis input type has been selected as "Encoder" with the first Input channel set to 0 (Encoders
only use one input channel). A differential encoder should then be connected to Kanalog JP3 A0+
A0- B0+ B0-.

The Axis Output type has been selected as "DAC Servo" with the first Output channel set to 0 (DAC
Servos only use one output channel). The Motor's Amplifier should then be connected to Kanalog
DAC0 JP11 pin 1 (and ground).

Limit Switch Options have selected I/O bits 136 and 137 which are Kanalog Opto Inputs 0 and 1 on
JP15 across pins 1&2 and 3&4.

KFLOP User Manual 2016

377 | P a g e

KFLOP User Manual 2016

378 | P a g e

Konnect 1.3 Hardware

Function Parameter Specification

Inputs Number

Type

VIH

VIL

Input Resistance

Banks

Bank Commons

32 Inputs

Full Opto Isolation

4.75V min On Voltage, 25V max allowed
Voltage

2V Max Off Voltage

4K Ohms

4 Banks of 8 Inputs per bank

Common Anode or Cathode

(Inputs activate with + or - voltage relative
to Common)

Outputs

Number
Type
Configuration
Max Voltage
Max Current
On Voltage Drop

16 Outputs
Full Opto Isolation
Darlington Transistor
30V
0.25A
0.6V max @ 2ma
0.9V max @ 0.25A

Connectors JP8 Aux Bus to KFLOP
Input Commons
J2 Power
IN0, IN1, IN2, IN3
OUT0, OUT1, OUT2
OUT3

16 pin Header (IDC 0.1 inch pitch)
4 pin Pluggable Screw Terminal 5mm pitch
4 pin Pluggable Screw Terminal 5mm pitch
8 pin Pluggable Screw Terminal 5mm pitch
8 pin Pluggable Screw Terminal 5mm pitch

Logic
Supplies

Voltage VDD5
Max Current
Voltage VDD33
Max Current
Voltage VDD12
Max Current

+5V ±10%
0.4A
+3.3 ±10%
0.2A
(not used internally)

Environment Operating Temperature
Storage Temperature
Humidity
Lead

0-40º C
0-40º C
20-90% Relative Humidity, non-condensing
Lead Free RoHS

Dimensions Length
Width
Height

8.0 inches (203mm)
3.5 inches (89mm)
0.75 inches (19mm)

KFLOP User Manual 2016

379 | P a g e

KONNECT - Connector Pinouts

KFLOP User Manual 2016

380 | P a g e

Konnect JP8 Aux Bus Connection to KFLOP JP6

JP8 provides all internal signal and power connections to KFLOP. This 16 pin ribbon connection
should be as short as possible to avoid noise and crosstalk as the cable forms a high speed
communication link. The Aux Bus supports multiple boards connected to the same cable. In most
case the specifics of the Aux Bus will be handled internally by KFLOP and no knowledge of the
signals will be required for use.

The 8 data bits (DB0-DB7) are bi-directional. CLKIN and STARTIN allow a board to be selected by
the address placed on the bus, and then a fixed sequence of 8-bit writes (2) and reads (5) can be
performed using the CLKIN signal.

Pin
KFLOP
Name

Konnect
Name

1 VDD5 VDD5

2 VDD12 VDD12

3 VDD33 VDD33

4 RESET# RESET#

5 IO26 DB0

6 IO27 DB1

7 IO28 DB2

8 GND GND

9 GND GND

10 IO29 DB3

11 IO30 DB4

12 IO31 DB5

13 IO32 DB6

14 IO33 DB7

15 IO34 CLKIN

16 IO35 STARTIN

KFLOP User Manual 2016

381 | P a g e

J2 Konnect Power

The power signals from KFLOP's Aux Bus are available on the J2 terminals. It is not normally
necessary to apply power to these terminals as power is supplied from KFLOP through the JP8
connector. For multiple boards it may be desirable to apply additional higher gauge power and
GND connections between boards. Note the Signal labeled 12V is connected to the KFLOP 12V
signal but may not be necessarily 12V. KFLOP and Konnect do not require or use the 12V signal
but only pass the signal through the various connectors. Disk Drive Power Supplies usually supply
+12V into KFLOP JR1 Pin 1. Also note that if any of these supply voltages are used for the Inputs
or outputs then the Input wiring will not be isolated from KFLOP.

It is possible to supply +5V power to KFLOP through these terminals if the power consumption on
KFLOP is less than 1 Amp and the ribbon cable connection is short (several inches or less).

Optically isolated Inputs

Individual Inputs (one of 4)

Input Bank Commons

KFLOP User Manual 2016

382 | P a g e

Konnect's 32 optically isolated inputs are grouped into 4 independent Banks of 8 inputs. This allows
any Bank to be used with either sourcing or sinking signals. However all inputs in the same bank
share the same common and must operate in the same mode. The 4 independent Banks also allow
different supply voltages and supply isolation to be used for each Bank. 24V is the preferred input
voltage and will draw (24V - 1.4 - 1.4)/4K ~ 5ma of current.

Konnect's 32 optically isolated inputs can be driven from a +/- 4.75V to a +/-25V signal. Less than
2V should be applied to ensure the input is off. One of the 32 input circuits is shown below. The
input consists of a AC type of Optocoupler in series with an LED indicator in series with a 4Kohm
resistor. The AC type of input allows the common to be connected to either the Positive or Negative
Supply voltage so that either sinking or sourcing outputs can be used (current can flow either
direction to activate the input).

External Wiring would typically be arranged such as:

KFLOP User Manual 2016

383 | P a g e

Opto Isolated Outputs

 Input Bank Commons

Each of the 16 Optically Isolated Outputs is completely isolated with a + and - terminal. When
active the output passes current from the + to - terminals much like a relay contact would.

The Outputs are capable of driving medium power devices such as relay coils. Loads up to 30V @
250ma may be driven.

The internal Konnect Output Circuitry is shown below which converts a photo transistor output to
darlington transistor output. The 220Ohm resistor allows the output have a low on voltage for low
currents before the transistor turns on. This allows the output to drive low current circuits with a
smaller on voltage(2ma @ < 0.6V). For example LVTTL/TTL inputs require less than 0.8V to
guarantee a low input. At higher currents Q1 becomes active and keeps the on voltage drop below
0.9V at 0.25A. Switching 0.25A at 24V allows loads up to 6W to be driven.

A typical wiring diagram driving 24V relays. Because of the less than 0.9V drop on the Konnect
outputs the load will be driven with more than 23.1V.

KFLOP User Manual 2016

384 | P a g e

 Board Address Selection Jumpers

The KFLOP's Auxiliary Port works as a Bus where multiple boards can be connected to the same
Port. Each board has an address so it can be selected as active. For a single Konnect board in the
system removing all Jumpers will configure the Konnect Board Address as zero. If multiple boards
are to be used set each board to a unique address.

A0 A1 A2 Address

Removed Removed Removed 0

Installed Removed Removed 1

Removed Installed Removed 2

Installed Installed Removed 3

Removed Removed Installed 4

Installed Removed Installed 5

Removed Installed Installed 6

Installed Installed Installed 7

KFLOP User Manual 2016

385 | P a g e

KFLOP can be configured to service each Konnect Board using the AddKonnect function. The first
parameter is the board address. The second parameter is the address of where KFLOP should
obtain data to send to Konnect's 16 Outputs. The 3rd Parameter the address of where KFLOP
should place the data received from Konnect’s 32 Inputs.

In most cases the addresses will be KFLOP Virtual I/O bit locations. KFLOP has two sets of Virtual
I/O Bits, standard and extended. The standard consists of 16 Bits in VirtualBits, and the Extended
consist of 1024 Bits in VirtualBitsEx[32].

The code below configures KFLOP to service 4 Konnect Boards (192 IO bits):

InitAux();

AddKonnect(0,&VirtualBits,VirtualBitsEx);

 AddKonnect(1,VirtualBitsEx+1,VirtualBitsEx+2);

 AddKonnect(2,VirtualBitsEx+3,VirtualBitsEx+4);

 AddKonnect(3,VirtualBitsEx+5,VirtualBitsEx+6);

Board 0 has Output Bits mapped to 48 - 63 and Input Bits Mapped to 1024-1055

Board 1 has Output Bits mapped to 1056-1071 and Input Bits Mapped to 1088-1119

Board 2 has Output Bits mapped to 1120-1135 and Input Bits Mapped to 1152-1183

Board 2 has Output Bits mapped to 1184-1199 and Input Bits Mapped to 1216-1247

Typical IO Mapping for Standard Single Konnect

AddKonnect(0,&VirtualBits,VirtualBitsEx);

Outputs

Virtual IO

 Number

0 48

1 49

2 50

3 51

4 52

5 53

6 54

7 55

8 56

9 57

10 58

11 59

12 60

13 61

14 62

KFLOP User Manual 2016

386 | P a g e

15 63

Inputs
Virtual IO
 Number

0 1024

1 1025

2 1026

3 1027

4 1028

5 1029

6 1030

7 1031

8 1032

9 1033

10 1034

11 1035

12 1036

13 1037

14 1038

15 1039

16 1040

17 1041

18 1042

19 1043

20 1044

21 1045

22 1046

23 1047

24 1048

25 1049

26 1050

27 1051

28 1052

29 1053

30 1054

31 1055

KFLOP User Manual 2016

387 | P a g e

KONNECT Block Diagram

KFLOP User Manual 2016

388 | P a g e

KONNECT Board Layout

KFLOP User Manual 2016

389 | P a g e

KONNECT - PWM to Analog Example

KFLOP+Konnect+Simple Filter Circuit can be used to produce a programmable analog signal. This
might be used as a basic Spindle Speed Control Signal if no others are available.

This demonstrates the flexibility of the Konnect Outputs which are Isolated, can sink or source
current, fast, medium power, and low impedance

Results

Analog Oscilloscope traces of Analog signals generated by a KFLOP Software generated PWM
Signal controlling two optically isolated Konnect Outputs that are then passed through a simple low
pass filter.

High resolution and response rates easily usable for speed control applications

KFLOP User Manual 2016

390 | P a g e

Square wave to test large signal changes. Significant change in < 25ms

KFLOP User Manual 2016

391 | P a g e

Reasonable linearity. This would require calibration if higher accuracy is needed.

Circuit

Simple cascaded dual low pass filters. Only 5 components. One resistor type and one capacitor
type. Component values are not critical (R1 and R2 should be matched).

One Konnect Output charges the capacitors and one output discharges them. Both should not be
turned on simultaneously (but no damage will occur if they are as R1+R2 will limit the current).

KFLOP User Manual 2016

392 | P a g e

The relatively low resistance values (100 Ohms) provides low output impedance so that any
connected load should have a minimal effect. A load of 10Kohms or higher should work well.

Double filtering provides low output ripple, while still having relatively quick response to changes,
uses reasonably small capacitors, even with relatively low PWM rates.

Konnect Outputs can be updated every 180us. So 180us is the basic PWM quantum. This results
in ~ 10mV p-p ripple..

KFLOP User Manual 2016

393 | P a g e

Software

This software example simulates how an RC circuit would respond to an applied, switched, high/low
voltage.

If the simulated voltage is below the desired output voltage then the output is switched high to
charge up the capacitor, otherwise it is switched low to discharge the capacitor.

The same state that is simulated is also sent to the Konnect Outputs to drive the real circuit. The
real circuit is a bit more complex but the simple model works reasonably well. The two RC circuits
will eventually evolve to the same voltage as the average PWM Voltage in the steady state. Only
the transient response will be slightly different. Similarly, somewhat incorrect component values will
only affect the transient response. The progra values were adjusted to get the best response.

The #define statements may require changes for your specific circuit and I/O Bit used.

The Vout value is coded to create a sine wave, but more typically the value would be passed in
through a global persist variable as a Spindle Speed Setting.

KFLOP User Manual 2016

394 | P a g e

#include "KMotionDef.h"

// Enables a Konnect on KFLOP JP4 Aux Port then

// PWM's two outputs as push-pull drivers such that

// when low passed filtered with an RC circuit becomes

// a variable analog source.

//

// Configure KFLOP to service Konnect 32 Input 16 output IO board

// Board address is 0,

// 16 Outputs are mapped to Virtual IO 48-63 (VirtualBits)

// 32 Inputs are mapped to Virtual IO 1024-1055 (VirtualBits[0])

//

// Attach Service to Aux0 Port (KFLOP JP4) instead of standard Aux1 Port

(KFLOP JP6)

//

void ServiceKonnectPWM(void);

double T,T0=0;

float Vout=0.0; // desired voltage

main()

{

 InitAux();

 AddKonnect_Aux0(0,&VirtualBits,VirtualBitsEx);

 for(;;)

 {

 T=WaitNextTimeSlice();

 ServiceKonnectPWM();

 // Fixed

 // Vout = 0.1;

 //Generate a 5 Hz 3V Sine Wave

 Vout = 3.0f*sin(T * TWO_PI * 5.0) + 5.0;

 //Generate a Saw Tooth wave

 // Vout = 2 + 6.0* (5.0*T - ((int)(5.0*T)));

 //Generate a 5 Hz Square wave

 // Vout = (5.0*T - ((int)(5.0*T))) > 0.5 ? 8 : 2;

 }

}

#define C 0.00029f // 1000uF

#define R 100.0f // 100 ohms

KFLOP User Manual 2016

395 | P a g e

#define Vcc 11.230f // supply voltage

#define HIGH_BIT 62 // This output drives Cap high

#define LOW_BIT 63 // This output drives Cap low

void ServiceKonnectPWM(void)

{

 static int FirstTime=TRUE;

 static float Vc=0.0f;

 static double T0;

 static int State;

 double T=Time_sec();

 if (FirstTime)

 {

 FirstTime=FALSE;

 T0=T;

 State=0;

 }

 else

 {

 float V,I;

 // Compute Voltage applied to Cap

 V=Vcc*State;

 // Compute current

 I=(V-Vc)/R;

 // Compute new Cap Voltage

 Vc += I/C*(T-T0);

 // determine next state

 if (Vc > Vout)

 {

 ClearBit(HIGH_BIT);

 SetBit(LOW_BIT);

 State=0;

 }

 else

 {

 ClearBit(LOW_BIT);

 SetBit(HIGH_BIT);

 State=1;

 }

KFLOP User Manual 2016

396 | P a g e

T0=T; // save time when applied

 }

}

Using SnapAmp 1000

SnapAmp is a very high performance, feature rich, efficient amplifier that expands the capability of
the KMotion Motion Control System.

A SnapAmp adds:
PWM Amplifier channels
Opto isolated Inputs
Differential Encoder inputs
General Purpose digital IO
Real-time current measurement for each motor coil
Real-time power supply voltage measurement
Programmable peak Supply Current limits
Programmable power supply voltage clamping
Digital temperature monitoring

Up to two SnapAmps may be added to a Single KMotion Controller.

A single SnapAmp adds four PWM full bridge amplifiers. The four PWM's are identified as 8,9,10,11
for the first SnapAmp in a system and 12,13,14,15 for a second SnapAmp in a system. A single
PWM/Full bridge is required for a brush motor, and a consecutive pair of PWM/Full Bridges are
required for a Stepper Motor or Brushless Motor.

A single SnapAmp adds four Quadrature Encoder inputs. The four Quadrature Encoder inputs are
identified as 8,9,10,11 for the first SnapAmp in a system and 12,13,14,15 for a second SnapAmp in
a system.

Within the KMotion executive program under the option menu set whether there are one or two
SnapAmps connected to KMotion. This enables expanded Analog and Digital Screens that will then
display the additional I/O available on the SnapAmp(s).

KFLOP User Manual 2016

397 | P a g e

The middle portion of the Analog Status Screen displays the measured currents, supply voltages,
temperatures, and current PWM settings.

KFLOP User Manual 2016

398 | P a g e

The Digital I/O screen displays the IO bits (numbers 64 - 93) for SnapAmp 0 in the middle portion of
the screen, and IO bits numbered (96 - 125) for Snap Amp 1 on the right portion of the screen. The
original KMotion I/O bits remain on the left portion of the screen. Note that KMotion I/O Bits 20-28
are used for the high speed communication to the SnapAmps and may not be used as user IO.

SnapAmp has programmable peak current limiting and also programmable peak supply voltage
clamping. The clamping is required for large machines because when a massive machine stops
quickly, the mechanical energy ends up getting injected back into the power supply. Some power
supplies don’t like this and allow their voltage to rise up possibly causing damage to the supply or
the SnapAmp. The clamping feature protects against this. Currently there isn't a way to configure
the current limits and voltage clamp from the KMotion Screens. Listed below is a small C program
that may be used to set them appropriately for most systems. Snap Amp has 2 green LEDS. One
just blinks to say it is alive and running. The other turns on for a fault condition. A fault can be an
over current or over temp. When a fault condition is present, all amps are disabled. When you
power up KMotion the fault LED should be on until you run the program and the current limit is set.

SnapAmp peak current limiting is measured from the Motor Supply high side terminal. High side
supply measurement is preferred for short protection because most wiring shorts to ground are
detected and properly trigger a fault. SnapAmp measures both High side and Low side currents.
The Low Side current measurement is made specific to each motor lead, digitized with a precision
10-bit ADC and available for plotting. High Side current measurement is fairly crude with a few
programmable thresholds for detecting catastrophic events such as shorts and stalls. Threshold
levels 9 through 15 set the approximate fault threshold. The lowest value that allows proper
operation of your system without faults should be used. The Table below lists the approximate fault
current thresholds for levels 9 through 15. The default power up value of 0 will generate a
continuous fault until set to the appropriate value. Note that if either of the two power supply peak
current detectors are over threshold the entire SnapAmp board (all 4 full bridges) will be disabled.
When a fault occurs all full bridges will be disabled for approximately 1/4 second, after which the
board will be automatically re-enabled until another fault is detected. Note: Since any over current
fault disables the amplifier for 1/4 second, whenever a fault is cleared, including when the level is
initially changed from zero, a delay of 1/2 second should be made before attempting any motion.

KFLOP User Manual 2016

399 | P a g e

Approximate Peak Current Thresholds:

Level Amps

9 2

10 6

11 10

12 14

13 18

14 22

15 26

Below is an example C program that must be loaded and executed in the KMotion Board to set the
Peak Current limits for each motor supply (to threshold level 9 in this example) and to set the
Supply voltage clamp level (to 90V in this example). The Supply Voltage clamping level should be
set several volts higher than the actual supply voltage. The example shows setting the values on
the first SnapAmp. To set values on the second snap amp replace the symbol SNAP0 with SNAP1.

#include "KMotionDef.h"
main()
{

// peak current limits

WriteSnapAmp(SNAP0+SNAP_PEAK_CUR_LIMIT0,9);
WriteSnapAmp(SNAP0+SNAP_PEAK_CUR_LIMIT1,9);
// clamp supply to 90V

WriteSnapAmp(SNAP0+SNAP_SUPPLY_CLAMP0

,SNAP_CONVERT_VOLTS_TO_ADC(90.0));
WriteSnapAmp(SNAP0+SNAP_SUPPLY_CLAMP1

,SNAP_CONVERT_VOLTS_TO_ADC(90.0));
// enable supply clamping

WriteSnapAmp(SNAP0+SNAP_SUPPLY_CLAMP_ENA0 ,1);
WriteSnapAmp(SNAP0+SNAP_SUPPLY_CLAMP_ENA1 ,1);

}

KFLOP User Manual 2016

400 | P a g e

SnapAmp - Connector Pinouts

SnapAmp contains three connectors labeled JP1, JP6, and JP7.

JP6 - KMotion Communication & Logic Power

JP6 is a proprietary high-speed communication bus where command and status communication
between the KMotion board and the SnapAmp Amplifier. Up to two SnapAmps may be attached to a
single KMotion Board. The second of the two SnapAmps must have a configuration jumper installed
into JP5.

This connection is required for proper operation of the SnapAmp and should be as short as
possible.

16 pin ribbon cable connection between SnapAmp and KMotion.

Note: 4 - 40 x 1 3/8 inch standoffs are used between SnapAmp (top) and KMotion (bottom).

16 pin ribbon cable connection between Dual SnapAmps and KMotion

KFLOP User Manual 2016

401 | P a g e

Notes:
4 - 40 x 1 3/8 inch standoffs are used between SnapAmp and KMotion
4 - 40 x 1 5/8 inch standoffs are used between SnapAmps

JP5 Jumper installed configures a SnapAmp as the 2nd SnapAmp.

When attaching SnapAmp to the KMotion first attach main ground plug as shown.

KFLOP User Manual 2016

402 | P a g e

For Dual Snap Amp systems attach the 1:2 spade Y adapter before connecting the first SnapAmp

JP7 - I/O - General Purpose LVTTL - OPTO Isolated - Differential - Encoder Inputs

JP7 Is used for all Digital I/O. Fourteen General Purpose LVTTL I/O, Eight Differential Encoder
Inputs, and Eight Optically Isolated Inputs.

KFLOP User Manual 2016

403 | P a g e

Optically isolated input circuit. 5-12V may be applied. Current requirements at 5V is approximately
6ma and at 12V is approximately 20ma. SnapAmp Opto inputs have negative true polarity
(energizing the Opto is read as a Logic 0 in KFLOP).

KFLOP User Manual 2016

404 | P a g e

Pin Name Description
Bit

(SnapAmp
#0)

Bit
(SnapAmp

#1)

1 GPIO0 Gen Purpose LVTTL 80 112

2 GPIO1 Gen Purpose LVTTL 81 113

3 GPIO2 Gen Purpose LVTTL 82 114

4 GPIO3 Gen Purpose LVTTL 83 115

5 GPIO4 Gen Purpose LVTTL 84 116

6 GPIO5 Gen Purpose LVTTL 85 117

7 GPIO6 Gen Purpose LVTTL 86 118

8 GPIO7 Gen Purpose LVTTL 87 119

9 GPIO8 Gen Purpose LVTTL 88 120

10 GPIO9 Gen Purpose LVTTL 89 121

11 GPIO10 Gen Purpose LVTTL 90 122

12 GPIO11 Gen Purpose LVTTL 91 123

13 GPIO12 Gen Purpose LVTTL 92 124

14 GPIO13 Gen Purpose LVTTL 93 125

15 CHA DIFF PLUS 0 Differential Input + Encoder 0 Input Phase A 64 96

16 CHA DIFF MINUS 0 Differential Input - Encoder 0 Input Phase A 64 96

17 CHB DIFF PLUS 0 Differential Input + Encoder 0 Input Phase B 65 97

18 CHB DIFF MINUS 0 Differential Input - Encoder 0 Input Phase B 65 97

19 CHA DIFF PLUS 1 Differential Input + Encoder 1 Input Phase A 66 98

20 CHA DIFF MINUS 1 Differential Input - Encoder 1 Input Phase A 66 98

21 CHB DIFF PLUS 1 Differential Input + Encoder 1 Input Phase B 67 99

22 CHB DIFF MINUS 1 Differential Input - Encoder 1 Input Phase B 67 99

23 CHA DIFF PLUS 2 Differential Input + Encoder 2 Input Phase A 68 100

24 CHA DIFF MINUS 2 Differential Input - Encoder 2 Input Phase A 68 100

25 CHB DIFF PLUS 2 Differential Input + Encoder 2 Input Phase B 69 101

26 CHB DIFF MINUS 2 Differential Input - Encoder 2 Input Phase B 69 101

27 CHA DIFF PLUS 3 Differential Input + Encoder 3 Input Phase A 70 102

28 CHA DIFF MINUS 3 Differential Input - Encoder 3 Input Phase A 70 102

29 CHB DIFF PLUS 3 Differential Input + Encoder 3 Input Phase B 71 103

30 CHB DIFF MINUS 3 Differential Input - Encoder 3 Input Phase B 71 103

31 OPTO NEG 0 Opto Isolated Input 0 Negative Connection 72 104

KFLOP User Manual 2016

405 | P a g e

32 OPTO POS 0 Opto Isolated Input 0 Positive Connection 72 104

33 OPTO NEG 1 Opto Isolated Input 1 Negative Connection 73 105

34 OPTO POS 1 Opto Isolated Input 1 Positive Connection 73 105

35 OPTO NEG 2 Opto Isolated Input 2 Negative Connection 74 106

36 OPTO POS 2 Opto Isolated Input 2 Positive Connection 74 106

37 OPTO NEG 3 Opto Isolated Input 3 Negative Connection 75 107

38 OPTO POS 3 Opto Isolated Input 3 Positive Connection 75 107

39 OPTO NEG 4 Opto Isolated Input 4 Negative Connection 76 108

40 OPTO POS 4 Opto Isolated Input 4 Positive Connection 76 108

41 OPTO NEG 5 Opto Isolated Input 5 Negative Connection 77 109

42 OPTO POS 5 Opto Isolated Input 5 Positive Connection 77 109

43 OPTO NEG 6 Opto Isolated Input 6 Negative Connection 78 110

44 OPTO POS 6 Opto Isolated Input 6 Positive Connection 78 110

45 OPTO NEG 7 Opto Isolated Input 7 Negative Connection 79 111

46 OPTO POS 7 Opto Isolated Input 7 Positive Connection 79 111

47 VDD5 + 5V Encoder Power Output
 48 VDD5 + 5V Encoder Power Output
 49 GND Digital Logic Ground
 50 GND Digital Logic Ground

For a single page printable PDF of the above click here

http://www.dynomotion.com/Help/SchematicsSnap/SnapAmpPinouts.pdf

KFLOP User Manual 2016

406 | P a g e

JP1 - Motor/Motor Supply (10-80V) Connector

Motor type DC -
Brush

Motor type - 3 Phase
brushless

Motor type - Stepper

Axis
0

Connect Motor across
OUT0-OUT1

Specify PWM Channel
8

Connect Phase A to OUT0
Connect Phase B to OUT1
Connect Phase C to OUT2
Leave OUT3 disconnected
Specify PWM Channel 8

Connect Coil A across OUT0-OUT1
Connect Coil B across OUT2-OUT3

Specify PWM Channels 8 and 9

Axis
1

Connect Motor across
OUT2-OUT3

Specify PWM Channel
9

Axis
2

Connect Motor across
OUT4-OUT5

Specify PWM Channel
10

Connect Phase A to OUT4
Connect Phase B to OUT5
Connect Phase C to OUT6
Leave OUT7 disconnected
Specify PWM Channel 10

Connect Coil A across OUT4-OUT5
Connect Coil B across OUT6-OUT7
Specify PWM Channels 10 and 11

Axis
3

Connect Motor across
OUT6-OUT7

Specify PWM Channel
11

KFLOP User Manual 2016

407 | P a g e

SnapAmp Stepper Motor Diagnostic Tutorial

Shown below is a plotted motion of 400 cycles (1600 full steps) with quite gradual acceleration up to
a velocity of 255 cycles/sec (1000 sps)

A noise from the motor is heard during about the middle half of the motion. Here the motor position
and current in both stepper coils is plotted.

KFLOP User Manual 2016

408 | P a g e

Zooming in on the beginning of the motion shows nice current waveforms 90 degrees out of phase.

KFLOP User Manual 2016

409 | P a g e

Here is a plot of the Velocity and the commanded output Voltage of one of the coils. Note how as
the Velocity increases the lead compensation (set at 55) increases the amplitude. Referring back to
the first current plot above we can see that the current amplitude is maintained at about 1.4 amps
throughout the motion. Showing the lead compensation is set properly.

KFLOP User Manual 2016

410 | P a g e

Zooming in on the current waveform at around 1 second where the motor noise seems to begin.

KFLOP User Manual 2016

411 | P a g e

Zooming still further at 0.98 seconds where the odd behavior seems most pronounced.

KFLOP User Manual 2016

412 | P a g e

Current Waveforms with no Lead - Current drops and motor immediately stalls

KFLOP User Manual 2016

413 | P a g e

Zooming in on the initial stall region

KFLOP User Manual 2016

414 | P a g e

Configuring Step and Direction Outputs

KFLOP supports connection to motor amplifiers that utilize step and direction (or quadrature) inputs
to control the motion. Step and direction motor amplifiers are typically used with stepper motors with
or without micro-stepping capability. Each "step" causes the motor amplifier to advance the motor
position one step in the direction specified by the "Direction" signal. Only two digital output signals
are required for this interface. Fine micro-stepping resolution combined with high motor RPM can
result in step rates in the megahertz. For example, a 200 step/rev stepping motor with 128:1 micro-
stepping running at 3000 RPM requires:

3000 RPM / 60 Sec/Min * 200 steps/rev * 128 µsteps/full step = 1.28 MHz µsteps/sec

KFLOP has 8 axes of Step and Direction. Output pulses up to 2.5 MHz can be generated.

The 8 Axes of Step/Dir outputs are normally hard wired to IO bits 8 through 15 on JP7 and IO bits
36 through 43 on JP5. However the first 4 Step/Dir outputs can be multiplexed to connectors JP4
and JP6 if desired. This may be required if JP7 is used for some other purpose such as interfacing
to the Kanalog I/O Expander. A global multiplexing bit is used to switch the outputs to the alternate
connectors.

Note that the first 8 of 10 I/O pins of Aux #0 and Aux #1 have internal 150 Ohm pull down resistors.
Therefore Pins JP4-13, JP4-14, JP6-13 and JP6-14 may not be used in Open Collector mode.

If an axis channel is selected as a Step and Direction axis, the corresponding 2 output pins will be
automatically configured as outputs and they may not be used as general purpose IO.

http://www.dynomotion.com/Help/StepAndDirection/StepAndDir.htm#Quadrature
http://www.dynomotion.com/Help/StepAndDirection/StepAndDir.htm#Global_Register

KFLOP User Manual 2016

415 | P a g e

For KFLOP see the Table below:

Mux = 0 Mux = 1

Signal IO Bit Pin IO Bit Pin

Step 0 8 JP7 - 15 22 JP4 - 13

Direction 0 9 JP7 - 16 23 JP4 - 14

Step 1 10 JP7 - 17 24 JP4 - 15

Direction 1 11 JP7 - 18 25 JP4 - 16

Step 2 12 JP7 - 19 32 JP6 - 13

Direction 2 13 JP7 - 20 33 JP6 - 14

Step 3 14 JP7 - 21 34 JP6 - 15

Direction 3 15 JP7 - 22 35 JP6 - 16

Signal IO Bit JP5 Pin

Step 4 36 JP5 - 1

Direction 4 37 JP5 - 2

Step 5 38 JP5 - 3

Direction 5 39 JP5 - 4

Step 6 40 JP5 - 5

Direction 6 41 JP5 - 6

Step 7 42 JP5 - 7

Direction 7 43 JP5 - 8

KFLOP User Manual 2016

416 | P a g e

To configure an axis as step and direction, on the Configuration Screen select output mode as
"Step Dir" and select which of the 4 available Step and Direction generators should be used by
setting the appropriate Output Channel 0 setting. See below.

Valid output channel settings 0-31 are allowed for KFLOP. Although only 8 Step and Direction
generators are available for KFLOP by adding 8 and/or 16 to the channel number the mode of the
Step/Dir Generator can be changed.

Adding 8 to the channel number uses the same generator to be used except the output pins are
actively driven (high and low) as 3.3V LVTTL signals instead of only driven low as open collector
outputs.

Adding 16 to the channel number switches the generator from Step/Dir to Quadrature output mode.

If your amplifier has opto coupler inputs driven off +5V then open-collector mode is likely to work
better. The diagram below shows how the open collector mode works driving the LED of an Opto
Coupler with the anode connected to +5V.

KFLOP User Manual 2016

417 | P a g e

However if the amplifier has standard logic inputs then LVTTL outputs should work better.

Quadrature outputs are required for some amplifiers. Quadrature outputs output two A B phases
instead of Step/Dir signals. An advantage is that only one signal edge transition takes place for
each "step" as opposed to a complete pulse.

The table below summarizes the modes:

Output Chan 0 Setting
Step & Dir Generator

Selected
Output Drive Type

0 0 Open Collector - Step/Dir

1 1 Open Collector - Step/Dir

2 2 Open Collector - Step/Dir

3 3 Open Collector - Step/Dir

4 4 Open Collector - Step/Dir

5 5 Open Collector - Step/Dir

6 6 Open Collector - Step/Dir

7 7 Open Collector - Step/Dir

8 0 LVTTL - Step/Dir

9 1 LVTTL - Step/Dir

10 2 LVTTL - Step/Dir

11 3 LVTTL - Step/Dir

12 4 LVTTL - Step/Dir

13 5 LVTTL - Step/Dir

14 6 LVTTL - Step/Dir

15 7 LVTTL - Step/Dir

KFLOP User Manual 2016

418 | P a g e

16 0 Open Collector - Quadrature

17 1 Open Collector - Quadrature

18 2 Open Collector - Quadrature

19 3 Open Collector - Quadrature

20 4 Open Collector - Quadrature

21 5 Open Collector - Quadrature

22 6 Open Collector - Quadrature

23 7 Open Collector - Quadrature

24 0 LVTTL - Quadrature

25 1 LVTTL - Quadrature

26 2 LVTTL - Quadrature

27 3 LVTTL - Quadrature

28 4 LVTTL - Quadrature

29 5 LVTTL - Quadrature

30 6 LVTTL - Quadrature

31 7 LVTTL - Quadrature

Note when configuring the motion profile for a Step and Direction Axis the appropriate maximum
Velocity, Acceleration, and Jerk should be set in units of micro-steps/sec, micro-steps/sec2, and
micro-steps/sec3 respectively.

Global Register sets Pulse Width, Polarity, Multiplexor

To change the Step/Dir Pulse width, Step Pulse Polarity, and connector multiplexor for channels 0-4
a programmable register in KFLOP's FPGA may be used.

KFLOP has the capability to program the Step pulse width as a 6-bit value. The default setting is
2us. The pulse length may be adjusted from 1 to 63 of 16.67 MHz clocks. Which corresponds to
60ns to 3.78us. Using a long pulse length limits the maximum frequency that can be generated. For
example with the default pulse length of 2us the frequency should not exceed 1/(2 x 2us) = 250KHz.

Setting Bit-6 high of the register can be set high to multiplex Step/Dir generators 0-3 from JP7 to
JP4 and JP6.

Setting Bit-7 high will invert the Step Output pulse so that it pulses High rather than Low. Some
Amplifiers (Geckos) prefer this mode. If the drive "steps" on the falling edge of the pulse, then this
option will provide more setup time for the Direction Signal. A User C Program must be used to
change the FPGA register. The following statement should be used:

FPGA(STEP_PULSE_LENGTH_ADD)=32; // set the pulse time to ~ 2us

KFLOP User Manual 2016

419 | P a g e

FPGA(STEP_PULSE_LENGTH_ADD)=32 + 0x40; // set the pulse time to ~ 2us and multiplex to
JP4 and JP6

FPGA(STEP_PULSE_LENGTH_ADD)=32 + 0x80; // set the pulse time to ~ 2us and pulse the Step
High

FPGA(STEP_PULSE_LENGTH_ADD)=32 + 0x40 + 0x80 // set the pulse time to ~ 2us, mux to JP4
and JP6, and pulse the Step High

Example Configuration for a IM804 Amplifier and Rapidsyn
Stepper

Layout - KMotion - Amplifier - Motor

KFLOP User Manual 2016

420 | P a g e

Amplifier Connections - resistors set coil currents (1500 ohms = 3A) and idle standby
current (270 ohms = 0.5A). DIP Switches set to ON-OFF-OFF-ON for 128:1 micro-
stepping.

KFLOP User Manual 2016

421 | P a g e

Rapidsyn stepper motor. Note coil winding's centertaps are not used.

KFLOP User Manual 2016

422 | P a g e

Axis channel 0 configures as "Step Dir" mode and using Step and Direction generator 0.

KFLOP User Manual 2016

423 | P a g e

Max Velocity 1.6 x 106 steps/sec (1.6e6 / 128 = 12,500 sps = 3750 RPM). Note this (and most)
steppers lose most all of their useful torque above several thousand full steps per second. The high
speed demonstrated here is intended to demonstrate KMotion's ability to generate high pulse rates.

Max Acceleration 6 x 106 steps/sec2

Max Jerk 2 x 108 steps/sec3

1 x 106 count Move performed and data captured over 3 seconds.

Pushing Move downloads all parameters, enables the axis, performs the movement, and plots the
result.

KFLOP User Manual 2016

424 | P a g e

Note after the axis has been enabled, digital IO bits 8 and 9 have automatically been configured as
outputs for use by Step and Direction Generator #0.

See Video

Click here for a video showing slow and smooth acceleration of this configuration up to 12,500 full
steps per second (1.6 MHz @ 128 microsteps/full step).

http://www.dynomotion.com/Videos/StepAndDir.wmv

KFLOP User Manual 2016

425 | P a g e

Configuring DC Brush Motor with SnapAmp and Single-
Ended Encoder to KMotion

This example will proceed through the following steps

1. Wiring the Motor, encoder, and Power
2. Configuring the Software
3. Testing the encoder
4. Testing the Motor/Amplifier
5. Closing the loop
6. Tuning the Servo
7. Executing a simple C Program Motion Sequence

Here is a video overview.

Wiring the Motor, encoder, and Power

This example configuration shows a single dc brush motor connected to the first of 4 available full
bridge drivers on a single SnapAmp 1000. A single-ended encoder is connected to KMotion's JP3
connector as encoder input #0 for Servo feedback. (The KMotion board is hidden underneath the
SnapAmp in the photo). Note: Encoders typically come as one of two types - differential outputs
(having A+, A-, B+, B-) or single ended outputs (A B). A differential encoder may be used as a
single ended encoder by only using the A+ and B+ signals (and leaving the A- and B-
unconnected). However single ended signals are more susceptible to noise than differential signals.
KMotion has 4 single ended encoder inputs. SnapAmp 1000 has 4 differential encoder inputs. In
this example a KMotion single-ended encoder input is used. Some encoders have a index pulse
that occurs once per revolution usually labeled as channel Z. In this example the index is not used
and is not connected.

http://www.dynomotion.com/Help/ExampleConfigurations/BrushServoSnapAmp.htm#Wiring_the_Motor,_encoder,_and_Power
http://www.dynomotion.com/Help/ExampleConfigurations/BrushServoSnapAmp.htm#Configuring_the_Software
http://www.dynomotion.com/Help/ExampleConfigurations/BrushServoSnapAmp.htm#Testing_the_encoder
http://www.dynomotion.com/Help/ExampleConfigurations/BrushServoSnapAmp.htm#Testing_the_Motor_Amplifier
http://www.dynomotion.com/Help/ExampleConfigurations/BrushServoSnapAmp.htm#Closing_the_loop
http://www.dynomotion.com/Help/ExampleConfigurations/BrushServoSnapAmp.htm#Tuning_the_Servo
http://www.dynomotion.com/Help/ExampleConfigurations/BrushServoSnapAmp.htm#Executing_a_simple_C_Program_Motion_Sequence
http://dynomotion.com/Videos/DCBrush.wmv

KFLOP User Manual 2016

426 | P a g e

KFLOP User Manual 2016

427 | P a g e

KFLOP User Manual 2016

428 | P a g e

Configuring the Software

After the motor and encoder connections have been made, the software is configured and the
encoder feedback and motor is tested.

Although any of KMotion's 8 axes could be used, axis 4 will be configured since axes 0-3 are
normally used for KMotion's on-board amplifiers.

In the KMotion Executive program three screens involve setting an axis's configuration: The
Configuration Screen, the Step Response Screen, and the Filters Screen. These three screens and
our choice of initial settings are shown below:

Execute the KMotion executive program and set the Options for a single SnapAmp. See below:

On the Configuration screen Axis Channel 4 is selected, the input type is set to Encoder at encoder
channel 0, the output type is set to DC Servo at PWM channel 8, and a very large following error is
set.

KFLOP User Manual 2016

429 | P a g e

KFLOP User Manual 2016

430 | P a g e

On the Filters Screen all filters are disabled by "Clearing" all filters to have a gain of 1.

The Step Screen servo loop (PID) parameters are set to only very low proportional gain. The max
output is set to a small value that should still allow some motor motion. SnapAmp DC Servo mode
outputs current commands in the range of -1000 to +1000 which corresponds to approximately -
30Amps to +30 Amps. So a max output of 100 will limit the current to 3 Amps. Although the
Integrator will not be initially used we set the max integrator to also be 100. The max error is set to a
large number. The motion profile parameters are set to values that we will expect to eventually
achieve. Our example uses a low speed torque motor being driven off of only 12V. This encoder
has 4000 counts/rev so a speed of 50,000 cnts/sec corresponds to 12.5 rev/sec (750 RPM).

With the Motor Power Supply tuned off, pushing the Enable button will download the parameters
from all screens and enable the axis without any motor motion. This will allow us to ensure the axis
is properly wired and configured as encoder input and of the correct encoder channel.

KFLOP User Manual 2016

431 | P a g e

Testing the encoder

We can now rotate the motor/encoder shaft by hand and should observe counts on Axis Channel 4
on the Analog Status Screen. Note if one of the other axis's configurations also is defined as input
Encoder channel 0 then that axis may count as well. The default configuration for axis 0 is Encoder
input from channel 0. To avoid confusion, disable any other axis by selecting that axis, define the
input/output types as "No Input" and "No Output", then download, then disable the axis. To test the
encoder, rotate the encoder and check if the expected number of counts per rev are obtained.
Rotating the axis the opposite direction should count in the opposite direction.

KFLOP User Manual 2016

432 | P a g e

Testing the Motor Amplifier

In order to test the Motor Amplifier functionality Console commands (PWMC - Pulse-Width-
Modulation Current Mode) will be entered to drive the motor in the forward and reverse direction.
The axis should and must be disabled to issue these commands, otherwise they will be immediately
overwritten with servo output commands. Small values should be used initially. Note: PWMC
commands may only be used with a SnapAmp (Software Version 2.31 or later), the KMotion
onboard amplifiers do not have current feedback mode so PWM commands should be used
instead. SnapAmps's PWMC current commands range from -1000 to +1000 which corresponds to
approximately -30Amps to +30 Amps. So a value such as 100 might be used to provide a drive of 3
Amps.

KFLOP User Manual 2016

433 | P a g e

Before issuing the PWMC commands, SnapAmp's peak current fault levels should be set. After
verifying that the axis is disabled (on the Analog Status Screen), load and execute the following
program to set the peak current limits. The Fault Green LED on the SnapAmp should turn off. The
"I'm alive" Green LED should remain blinking.

Setup the Console Screen as shown below. Sending the commands should drive the motor in one
direction, then no motor drive, then drive in the other direction respectively.

KFLOP User Manual 2016

434 | P a g e

Closing the loop

If the motor and encoder are working we are ready to attempt to close the servo feedback loop. All
that is required is to enable the axis by pressing "Enable" on the Step response Screen. Normally
one of two things will occur. Either the axis will respond as a weak servo, or the servo will have
positive instead of negative feedback and runaway from the target destination rather than toward
the target destination.

If the servo has positive instead of negative feedback, something should be reversed. Either the
Motor leads may be reversed, the encoder signals may be reversed, or a Input Gain of -1 may be
entered on the Configuration Screen (as shown below).

If the servo has proper feedback and responds as a weak servo, as the motor/encoder shaft is
turned the servo will cause torque to restore the position back to where it was. With the example
proportional gain of 0.01, turning the sharft 1 turn should generate an error of 4000 counts. 4000
counts multiplied by a gain of 0.01 = 40 PWMC counts or 40 / 1000 * 30Amps = 1.2 Amps.

KFLOP User Manual 2016

435 | P a g e

Tuning the Servo

Once the servo loop is functional Servo Tuning should be performed to move the performance,
hopefully up to the desired levels. Servo tuning is a complex subject that has been written about
extensively. The basic idea is to increase the feedback gains in order to reduce following errors and
speed of response without going unstable (oscillating wildly). KMotion has extensive plotting tools to
help tune and understand how well a set of parameters performs.

To test the current performance, disable the axis, manually move it to a position where it may move
+10000 counts, then push the "Move" button. A plot such as that shown below should be observed.
Set the plot type and axis selections to agree with those shown below. The blue plot is the desired
path as defined by the motion profile and the motion is made for 10,000 counts and then a second
motion is made back to zero. The red plot is the measured encoder position. Note that the red plot
attempts to follow the blue plot but with a large error of thousands of counts. Gradually increase the
P gain (possibly by factors of 2) while pushing the Move button and the following error should
reduce. At some point the system will probably go into oscillation and become unstable. It may be
necessary to disable the axis, reduce the gain, and re-enable the axis.

Increasing the gain 500X (from 0.01 to 5) results in a much better response. Notice the blue
(desired) plot is almost completely hidden behind the red measured plot. However by zooming in to
the purple rectangle (left click mouse drag) we can see oscillation. See the second plot below.

KFLOP User Manual 2016

436 | P a g e

KFLOP User Manual 2016

437 | P a g e

Increasing the derivative gain can often reduce oscillation. In the plot below we have set the D gain
to 16. Notice the oscillation has been reduced.

A Bode plot is useful in understanding the frequency response and for designing advanced servo
loop filters. Below is the Bode plot response of the system. Important features to look for in a Bode
plot is where the Magnitude (blue plot) first passes through the 0 db line. This is the bandwidth of
the system. Another important measure is the "phase margin" which is how far away the phase is
from -180 degrees when the magnitude is at 0db. In this case the phase margin is 28 degrees. See
the Bode Screen in the main Help section for more information

KFLOP User Manual 2016

438 | P a g e

KFLOP User Manual 2016

439 | P a g e

Executing a simple C Program Motion Sequence

The C program below is an example of a simple program to perform a sequence of moves and
repeat. There are 5 moves of 8000 counts (2 motor revs) and then a move back to the start. After
each small move there is a wait until the motion is complete followed by a 0.2 second delay. Here is
a video of the mechanism executing the motion.

http://dynomotion.com/Videos/DCBrush.wmv

KFLOP User Manual 2016

440 | P a g e

Configuring Closed Loop Step and Direction Outputs

The Closed Loop Stepper Mode works much the same as open loop Step and Direction Output
Mode except there is also an error feedback correction term. In fact, if the gains of the correction
term (PIDs) are set to zero then the mode will behave the same as an open loop Step Direction
Mode. This mode is much easier to “tune” than a stepper driven as a brushless motor and unlike a
brushless motor there are no commutation issues. A good application for this mode is a stepper with
linear glass scales. The main feature is the position feed forward with fixed gain of 1.0. See the flow
diagram below. Without any correction it behaves just like a stepper. As correction gains are added,
corrections for drift, friction, load forces, or even a miss step are made. One disadvantage is that the
motor can still stall. After the stall and after the motion stops the servo loop could then gradually
correct the position which could be of value in some applications.

To Configure an axis a a Closed Loop Servo select "CL Step" as the output mode for the axis as
shown below. Any input mode may be used as position feedback, but the most common is a
quadrature encoder either on the motor shaft or as a linear glass scale.

Note that an Input gain of 1.25 is used in this example. This was calculated from the ratio of the
number of μSteps/rev to the number of encoder counts/rev. (A micro stepper amplifier set to 50
microsteps/full setp and a standard stepper motor with 200 full steps/rev will have 10,000
μSteps/rev, a rotary encoder with 2000 lines/rev will profuce 8000 quadrature counts/rev,
10000/8000 = 1.25). The raw axis units will be in μSteps.

Max Following Error may be used to trip an axis disable when exceeded.

KFLOP User Manual 2016

441 | P a g e

Important PID parameters are shown below circled in red. The I (Integrator) gain of 0.01 is probably
the most important. Your system may require more or less. Too much and the system may over
shoot or become unstable (oscillate). Too little and corrections will be made slowly. Because we are
measure the position and also commanding a position Integrator control works well. An integrator
will ramp the output at a rate proportional to the amount of the error. This "slowing as we get closer"
will result in an exponential curve approaching the target. Backlash, friction, delays, and other
factors will eventually cause the system to overshoot and become unstable with too much gain.

Max limits may also be useful for limiting the correction. In this example the limits are set to large
values. Limiting the max error to a small value will limit the maximum slew rate of the Integrator.
Max Output and Max Integrator are similar for an Integrator only compensator and will limit the
maximum amount of correction that can be made.

KFLOP User Manual 2016

442 | P a g e

KFLOP User Manual 2016

443 | P a g e

A 2nd order Low Pass Filter is also used in this example to make the system more stable by
reducing high frequency corrections. Note a cutoff frequency of 100Hz with Q 1.4 is used. After
specifying the filter the Compute Button must be pressed to compute the Z domain IIR Coeffiecients
that are downloaded and used by KFlop.

Test Mechanism with Size 34 Stepper with encoder connected to a Dummy Load.

KFLOP User Manual 2016

444 | P a g e

Test Move of a Size34 Stepper with 50 usteps/full step forward and backward at 4000sps

With PID gain zero (no correction). Note encoder shows errors of ~100uSteps

KFLOP User Manual 2016

445 | P a g e

Integrator gain now set at 0.01. Also 2nd Order 100Hz Low Pass Filter Q=1.4 used

Note error is reduced. Blue plot is position error, green is the Output (correction offset)

A Bode Plot of the Compensator PID + LP Filter response. I=0.010 and 2nd order Low Pass 100Hz
@ Q=1.4. Red plot is Magnitude.

Note that errors less than about 20 Hz will be corrected. Correction gain drops below 1 (0db) at
higher frequencies.

KFLOP User Manual 2016

446 | P a g e

KFLOP User Manual 2016

447 | P a g e

Configuring a Resolver as Input to KMotion

Here is a video overview.

This example configuration shows a Resolver used as a KMotion input device. A Resolver serves a
purpose much like a digital encoder. A Resolver is physically somewhat similar to a transformer with
two output windings called sine and cosine outputs. For a given excitation input, the amplitude of
the sine output is proportional to the sine of the mechanical rotor position, and the amplitude of the
cosine output is proportional the cosine of the mechanical rotor position. By driving the excitation
coil of a Resolver and measuring the amplitude of the sine and cosine outputs, the mechanical rotor
position can be determined. Although a Resolver is an analog device there are some significant
advantages. A resolver is a high reliability device originally developed for military applications.
Because a Resolver is able to determine the rotor position in an absolute manner for an entire shaft
revolution it is not possible to "lose" position of a fraction of a shaft revolution, as with an encoder. If
the position is "lost" it must be lost by a complete multiple of an entire shaft rotation. Often older
CNC systems used Resolvers as their feedback device. When using KMotion to retrofit an older
system with resolvers, because KMotion may be used with resolvers, it is not necessary to modify
the original system to change to digital encoders.

Note: many older systems used a resolver in a somewhat reverse manner. The controller excited
the sine and cosine coils in a manner such that third coil would generate a signal proportional to the
difference between the desired rotor position and the actual rotor position. This difference was then
used to directly drive the servo motors to reduce the error. Operating in this manner the controller
has no information on the actual rotor position or the following error between the desired and actual
rotor positions. A resolver originally used in this manner may still be used in the manner described
in this example.

Shown below is a schematic symbol of a Resolver. The arrow indicates a varying coupling between
the excitation input and the output coils as a function of rotor angle.

http://dynomotion.com/Videos/Resolver.wmv

KFLOP User Manual 2016

448 | P a g e

Here is a typical resolver unit (manufactured by Singer) with 6 wires, two for each of the three coils.
The wiring of a resolver can usually be determined using a simple ohmmeter. The ohm meter can
be used to determine which pair of wires belong to a coil. Furthermore the sine and cosine coils
should have a very similar resistance and usually different from the excitation coil. In the resolver
shown below the excitation coil has a resistance of 20 ohms and the sine/cosine oils have a
resistance of 37 ohms. Swapping the sine and cosine coils will simply reverse the measured motion.

KFLOP User Manual 2016

449 | P a g e

Resolvers may be interfaced to KMotion in one of two ways. One method is where an external
circuit or module is available to excite the resolver and determine the sine and cosine magnitudes
externally. In this case only the sine and cosine magnitude signals need to be connected to ADC
inputs and "Resolver" input mode can be selected. For further information regarding this interface
method see the Configuration Screen Setup.

A second method is where KMotion performs the excitation and synchronously samples the AC
outputs to determine and track the Resolver position. The second method doesn't require an
external Resolver Control Module or control circuit. Only a single diode and two filter capacitors are
required. This is the method used in this example configuration. The method does require a
KMotion User Program (shown below written in C) to switch the resolver excitation on and off and to
sample the output waveforms at the appropriate times to determine the amplitudes.

KMotion's Aux Switch output is used in this example to excite the resolver's input coil with a 5V
square wave. +5V is applied to one end of the coil and the Aux Switch drives the opposite end of
the coil to ground. This applies +5V to the coil which causes current to ramp up in the coil. When
the switch is turned off, current is allowed to recirculate through a diode which will cause the current
to ramp down due to the coil's internal resistance. This processes is repeated every 4 User Program
Time Slices (180us each) or every 720us (1.4KHz). The User Program computes the resolver
position on both the positive and negative transitions so the effective update rate is 2.8 KHz. This
Aux Switch output, and single diode, may be used to drive several resolvers.

The two output coils of each resolver are each connected to an ADC input with the other ends of the
coils connected to ground. 0.2uF filter capacitors are used to smooth the output waveforms and
should be located near the KMotion Board.

The example layout below shows the connections for a single resolver. Because KMotion has only 4
ADC inputs, KMotion is limited to interfacing to two resolvers. If more axes are required then digital
encoders must be used. For testing purposes a small DC torque motor is shown connected to the
resolver. The DC motor is driven from one PWM output using the +12V supply. A more likely
scenario for an actual CNC retrofit would be to use the existing motor power amplifiers driven by
KMotion's +/-10V DAC outputs.

KFLOP User Manual 2016

450 | P a g e

A wiring diagram for a complete 2 axis resolver is shown below. Also shown is the DAC output
connections for connecting to external power amplifiers with +/-10 V Inputs.

KFLOP User Manual 2016

451 | P a g e

This is a KMotion User Program which basically loops every 4 time slices (720us), switches the 5V
excitation, samples the ADC readings, computes the output magnitudes, and calls an internal
function (DoResolverInput2) that computes the rotor angle and updates the axis's Position.
DoResolverInput2 internally multiplies the measured angle (in Radians) by 1000/(2 pi) so that 1
shaft revolution will be seen as 1000.0 counts. This causes numeric values to have similar ranges
as with digital encoders.

#include "KMotionDef.h"

// Two Axis Resolver Program 1/6/08

//

// outputs square wave to both resolvers using Aux Switch Output

//

// then samples output coils near positive and negative peaks

// takes the difference to compute magnitudes

//

// these ratios are used to match the amplitudes of sine:cosine

#define RATIO0 (978.0f/768.0f) // size j/size k

#define RATIO1 (950.0f/709.0f) // size n/size m

KFLOP User Manual 2016

452 | P a g e

main()

{

 int i=0;

 int k0,j0,k1,j1;

 int m0,n0,m1,n1;

 SetBit(28); //+/-15V on

 SetBitDirection(30,1); // configure AUX switch as output

 DefineCoordSystem(0,1,-1,-1); // Define 2 axis system

 Delay_sec(0.1); // wait for +/- 15V to be stable

 for (;;) // repeat forever

 {

 WaitNextTimeSlice(); // wait a few servo cycles

 WaitNextTimeSlice();

 Delay_sec(10e-6); // wait for ADC conversion to complete

 k0=ADC(0); // Sample all the ADCs

 j0=ADC(1);

 m0=ADC(2);

 n0=ADC(3);

 SetBit(30); // Switch the resolver excitation

 //compute & track position based on measured magnitudes

 DoResolverInput2(ch0,(k1-k0)*RATIO0,j1-j0);

 DoResolverInput2(ch1,(m1-m0)*RATIO1,n1-n0);

 WaitNextTimeSlice(); // wait a few servo cycles

 WaitNextTimeSlice();

 Delay_sec(10e-6); // wait for ADC conversion to complete

 k1=ADC(0); // Sample all the ADCs

 j1=ADC(1);

 m1=ADC(2);

 n1=ADC(3);

 ClearBit(30); // Switch the resolver excitation

 //compute & track position based on measured magnitudes

 DoResolverInput2(ch0,(k1-k0)*RATIO0,j1-j0);

 DoResolverInput2(ch1,(m1-m0)*RATIO1,n1-n0);

#if 0 // enable this to print the magnitudes occasionally

 if (++i==1000)

 {

 i=0;

 printf("%5.0f %5d\n",k1-k0,j1-j0);

 }

#endif

 }

}

KFLOP User Manual 2016

453 | P a g e

The Configuration Screen input mode is shown here set to "User Input". This allows the User
Program shown above to be in charge of setting the current position.

KFLOP User Manual 2016

454 | P a g e

Here is a Move Plot of a move of 1000 which corresponds to 1 shaft revolution of the encoder. Not
the Command (Blue) and Measured (Red) positions are nearly overlaid.

Zooming in on the position gives an indication of the position resolution and noise level. The signal
shown below has a range of approximately +/- 0.5 counts where 1 count is 1/1000 of a shaft
resolution. So for example on a system with a 5 pitch lead screw (0.200 inches / rev) this would
correspond to +/- 0.1 mils (~ 2.5um).

KFLOP User Manual 2016

455 | P a g e

KFLOP User Manual 2016

456 | P a g e

Data Gathering

KMotion provides a flexible method for capturing data of all types every servo sample period
(90µs). This same method is how KMotion gathers step response and Bode plot data.

Basically a list of addresses and data types are defined. An end address of where to stop capturing
data is set, and when triggered the Servo Interrupt will capture the specified data values. All values
are converted to double precision numbers before being placed into the gather buffer. The
maximum size of the Gather Buffer is 1,000,000 double precision values (8 MBytes).

#define MAX_GATHER_DATA 1000000 // Size of gather buffer (number of doubles, 8 bytes each).

The following example shows how to setup to capture the two PWM drives (for a stepper motor) and
the commanded destination for a 0.5 second time period, trigger the capture, make a simple move,
wait until the capture is complete, and print the results.

#include "KMotionDef.h"

main()

{

int i,n_Samples = 0.5 / TIMEBASE;

gather.Inject = FALSE; // Don't inject any Data anywhere

gather.list[0].type = GATHER_LASTPWM_TYPE; // Gather PWM 0

gather.list[0].addr = &LastPWM[0];

gather.list[1].type = GATHER_LASTPWM_TYPE; // Gather PWM 1

gather.list[1].addr = &LastPWM[1];

gather.list[2].type = GATHER_DOUBLE_TYPE; // Gather Dest axis 0

gather.list[2].addr = &chan[0].Dest;

gather.list[3].type = GATHER_END_TYPE;

gather.bufptr = (double *)0xfffffffc; // force more than endbuf

gather.endptr = gather_buffer + 3 * n_Samples;

TriggerGather(); // start capturing data

MoveRel(0,20); // Start a motion

while (!CheckDoneGather()) ; // what till all captured

// print all captured data (every 50th sample)

for (i=0; i<n_Samples; i+=10)

KFLOP User Manual 2016

457 | P a g e

printf("%d,%f,%f,%f\n", i,gather_buffer[i*3],

gather_buffer[i*3+1],

gather_buffer[i*3+2]);

}

Data will be printed to the KMotion Console Screen which is also written to a permanent log file at:

<KMotionInstallDir>\KMotion\Data\LogFile.txt

Normally data scrolls off of the Console Screen into the permanent log file, to flush all data into the
log file, exit the KMotion application.

An Excel plot of the captured data is shown below.

KFLOP User Manual 2016

458 | P a g e

Videos

Step and Direction

Brush Motor with SnapAmp

Resolver with KMotion

Nonlinear Kinematics

IR Remote Control

How Parameters can be Set

KSTEP 4-Axis Stepper Amp

Forum/Support

Dynomotion Yahoo Group

CNCzone Forum

http://dynomotion.com/Videos/StepAndDir.wmv
http://dynomotion.com/Videos/DCBrush.wmv
http://dynomotion.com/Videos/Resolver.wmv
http://dynomotion.com/Videos/Gizmo.wmv
http://dynomotion.com/Videos/RemoteControl.wmv
http://dynomotion.com/Help/FlashHelp/Parameters/index.html
http://dynomotion.com/Videos/KSTEP.wmv
http://groups.yahoo.com/neo/groups/DynoMotion
http://www.cnczone.com/forums/dynomotion-kflop-kanalog/

